Last active
October 20, 2023 23:53
-
-
Save jaems33/6f445734f777db08d90892681641eb2e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from numpy.linalg import inv | |
x_observations = np.array([4000, 4260, 4550, 4860, 5110]) | |
v_observations = np.array([280, 282, 285, 286, 290]) | |
z = np.c_[x_observations, v_observations] | |
# Initial Conditions | |
a = 2 # Acceleration | |
v = 280 | |
t = 1 # Difference in time | |
# Process / Estimation Errors | |
error_est_x = 20 | |
error_est_v = 5 | |
# Observation Errors | |
error_obs_x = 25 # Uncertainty in the measurement | |
error_obs_v = 6 | |
def prediction2d(x, v, t, a): | |
A = np.array([[1, t], | |
[0, 1]]) | |
X = np.array([[x], | |
[v]]) | |
B = np.array([[0.5 * t ** 2], | |
[t]]) | |
X_prime = A.dot(X) + B.dot(a) | |
return X_prime | |
def covariance2d(sigma1, sigma2): | |
cov1_2 = sigma1 * sigma2 | |
cov2_1 = sigma2 * sigma1 | |
cov_matrix = np.array([[sigma1 ** 2, cov1_2], | |
[cov2_1, sigma2 ** 2]]) | |
return np.diag(np.diag(cov_matrix)) | |
# Initial Estimation Covariance Matrix | |
P = covariance2d(error_est_x, error_est_v) | |
A = np.array([[1, t], | |
[0, 1]]) | |
# Initial State Matrix | |
X = np.array([[z[0][0]], | |
[v]]) | |
n = len(z[0]) | |
for data in z[1:]: | |
X = prediction2d(X[0][0], X[1][0], t, a) | |
# To simplify the problem, professor | |
# set off-diagonal terms to 0. | |
P = np.diag(np.diag(A.dot(P).dot(A.T))) | |
# Calculating the Kalman Gain | |
H = np.identity(n) | |
R = covariance2d(error_obs_x, error_obs_v) | |
S = H.dot(P).dot(H.T) + R | |
K = P.dot(H).dot(inv(S)) | |
# Reshape the new data into the measurement space. | |
Y = H.dot(data).reshape(n, -1) | |
# Update the State Matrix | |
# Combination of the predicted state, measured values, covariance matrix and Kalman Gain | |
X = X + K.dot(Y - H.dot(X)) | |
# Update Process Covariance Matrix | |
P = (np.identity(len(K)) - K.dot(H)).dot(P) | |
print("Kalman Filter State Matrix:\n", X) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment