Created
January 4, 2017 06:58
-
-
Save jaeoh2/769c009cd5aaf5dde3fdc4aca320edde to your computer and use it in GitHub Desktop.
Tensorflow CNN performance comparison (CPU vs GPU) with mnist dataset
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Based from : https://github.com/sjchoi86/tensorflow-101/blob/master/notebooks/cnn_mnist_simple.ipynb | |
""" | |
import tensorflow as tf | |
import os | |
import sys | |
import time | |
from tensorflow.examples.tutorials.mnist import input_data | |
if not os.path.exists('dataset'): | |
os.mkdir('dataset') | |
mnist = input_data.read_data_sets('dataset/', one_hot=True) | |
trainimg = mnist.train.images | |
trainlabel = mnist.train.labels | |
testimg = mnist.test.images | |
testlabel = mnist.test.labels | |
def do_train(device_type): | |
if device_type == 'gpu': | |
device_type = '/gpu:0' | |
else: | |
device_type = '/cpu:0' | |
with tf.device(device_type): # <= This is optional | |
n_input = 784 | |
n_output = 10 | |
weights = { | |
'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64], stddev=0.1)), | |
'wd1': tf.Variable(tf.random_normal([14*14*64, n_output], stddev=0.1)) | |
} | |
biases = { | |
'bc1': tf.Variable(tf.random_normal([64], stddev=0.1)), | |
'bd1': tf.Variable(tf.random_normal([n_output], stddev=0.1)) | |
} | |
def conv_simple(_input, _w, _b): | |
# Reshape input | |
_input_r = tf.reshape(_input, shape=[-1, 28, 28, 1]) | |
# Convolution | |
_conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME') | |
# Add-bias | |
_conv2 = tf.nn.bias_add(_conv1, _b['bc1']) | |
# Pass ReLu | |
_conv3 = tf.nn.relu(_conv2) | |
# Max-pooling | |
_pool = tf.nn.max_pool(_conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') | |
# Vectorize | |
_dense = tf.reshape(_pool, [-1, _w['wd1'].get_shape().as_list()[0]]) | |
# Fully-connected layer | |
_out = tf.add(tf.matmul(_dense, _w['wd1']), _b['bd1']) | |
# Return everything | |
out = { | |
'input_r': _input_r, 'conv1': _conv1, 'conv2': _conv2, 'conv3': _conv3 | |
, 'pool': _pool, 'dense': _dense, 'out': _out | |
} | |
return out | |
print ("CNN ready with {}".format(device_type)) | |
x = tf.placeholder(tf.float32, [None, n_input]) | |
y = tf.placeholder(tf.float32, [None, n_output]) | |
learning_rate = 0.001 | |
training_epochs = 10 | |
batch_size = 100 | |
display_step = 1 | |
with tf.device(device_type): | |
_pred = conv_simple(x, weights, biases)['out'] | |
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y)) | |
optm = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) | |
_corr = tf.equal(tf.argmax(_pred,1), tf.argmax(y,1)) # Count corrects | |
accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) # Accuracy | |
init = tf.initialize_all_variables() | |
#Saver | |
save_step = 1; | |
savedir = "nets/" | |
saver = tf.train.Saver(max_to_keep=3) | |
if not os.path.exists('nets'): | |
os.mkdir('nets') | |
print ("Network Ready to Go!") | |
do_train = 1 | |
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) | |
sess.run(init) | |
start_time = time.time() | |
if do_train == 1: | |
for epoch in range(training_epochs): | |
avg_cost = 0. | |
total_batch = int(mnist.train.num_examples/batch_size) | |
# Loop over all batches | |
for i in range(total_batch): | |
batch_xs, batch_ys = mnist.train.next_batch(batch_size) | |
# Fit training using batch data | |
sess.run(optm, feed_dict={x: batch_xs, y: batch_ys}) | |
# Compute average loss | |
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch | |
# Display logs per epoch step | |
if epoch % display_step == 0: | |
print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost)) | |
train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys}) | |
print (" Training accuracy: %.3f" % (train_acc)) | |
test_acc = sess.run(accr, feed_dict={x: testimg, y: testlabel}) | |
print (" Test accuracy: %.3f" % (test_acc)) | |
# Save Net | |
if epoch % save_step == 0: | |
saver.save(sess, "nets/cnn_mnist_simple.ckpt-" + str(epoch)) | |
print ("Optimization Finished.") | |
print ("Device : {}, Execution Time : {} sec".format(device_type, time.time() - start_time)) | |
do_train('gpu') | |
do_train('cpu') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment