Created
April 14, 2017 08:44
-
-
Save jageshmaharjan/e7a7acac68a66ac4795092f34376354a to your computer and use it in GitHub Desktop.
The PR is shown below. Basically, i was trying to feed my input to LSTM cell, normalize and trying to feed the Convolution layer. And My stacktrace is shown below. I don't know where did i get it wrong.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
MultiLayerConfiguration configuration = new NeuralNetConfiguration.Builder() | |
.updater(Updater.NESTEROVS).adamMeanDecay(0.9).adamVarDecay(0.999) | |
.regularization(true).l2(1e-5).optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) | |
.weightInit(WeightInit.XAVIER) | |
.convolutionMode(ConvolutionMode.Truncate) | |
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue).gradientNormalizationThreshold(1.0) | |
.learningRate(2e-2) | |
.list() | |
.layer(0, new GravesBidirectionalLSTM.Builder() | |
.name("LSTMCell_1") | |
.nIn(vectorSize) | |
.activation(Activation.SIGMOID) | |
.nOut(100) | |
.build()) | |
.layer(1, new DenseLayer.Builder() | |
.name("Normalization_layer") | |
.gradientNormalization(GradientNormalization.ClipL2PerParamType) | |
.nOut(100) | |
.build()) | |
.layer(2, new ConvolutionLayer.Builder() | |
.kernelSize(5,1) | |
.stride(1,1) | |
.activation(Activation.SIGMOID) | |
.build()) | |
.layer(3, new GlobalPoolingLayer.Builder() | |
.activation(Activation.RELU) | |
.build()) | |
.layer(4, new OutputLayer.Builder() | |
.activation(Activation.SOFTMAX) | |
.nOut(2) | |
.build()) | |
.inputPreProcessor(2, new FeedForwardToCnnPreProcessor(100,100,1)) | |
.pretrain(false).backprop(true) | |
.build() | |
// MY STACKTRACE | |
Exception in thread "main" java.lang.IllegalStateException: Invalid input: expected FeedForward input of size 10000 = (d=1 * w=100 * h=100), got InputTypeFeedForward(100) | |
at org.deeplearning4j.nn.conf.preprocessor.FeedForwardToCnnPreProcessor.getOutputType | |
... |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment