Created
August 22, 2022 04:44
-
-
Save jaidevd/29bc49a410e38f32a2ee8d374c73823c to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# coding: utf-8 | |
from keras import layers as L | |
from keras import backend as K | |
from keras.models import Model | |
import tensorflow as tf | |
import numpy as np | |
_epsilon = tf.convert_to_tensor(K.epsilon(), np.float32) | |
def my_loss(target, output): | |
""" | |
A custom function defined to simply sum the pixelwise loss. | |
This function doesn't compute the crossentropy loss, since that is made a | |
part of the model's computational graph itself. | |
Parameters | |
---------- | |
target : tf.tensor | |
A tensor corresponding to the true labels of an image. | |
output : tf.tensor | |
Model output | |
Returns | |
------- | |
tf.tensor | |
A tensor holding the aggregated loss. | |
""" | |
return - tf.reduce_sum(target * output, | |
len(output.get_shape()) - 1) | |
def make_weighted_loss_unet(input_shape, n_classes): | |
# two inputs, one for the image and one for the weight maps | |
ip = L.Input(shape=input_shape) | |
# the shape of the weight maps has to be such that it can be element-wise | |
# multiplied to the softmax output. | |
weight_ip = L.Input(shape=input_shape[:2] + (n_classes,)) | |
# adding the layers | |
conv1 = L.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(ip) | |
conv1 = L.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1) | |
conv1 = L.Dropout(0.1)(conv1) | |
mpool1 = L.MaxPool2D()(conv1) | |
conv2 = L.Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(mpool1) | |
conv2 = L.Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) | |
conv2 = L.Dropout(0.2)(conv2) | |
mpool2 = L.MaxPool2D()(conv2) | |
conv3 = L.Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(mpool2) | |
conv3 = L.Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) | |
conv3 = L.Dropout(0.3)(conv3) | |
mpool3 = L.MaxPool2D()(conv3) | |
conv4 = L.Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(mpool3) | |
conv4 = L.Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) | |
conv4 = L.Dropout(0.4)(conv4) | |
mpool4 = L.MaxPool2D()(conv4) | |
conv5 = L.Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(mpool4) | |
conv5 = L.Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) | |
conv5 = L.Dropout(0.5)(conv5) | |
up6 = L.Conv2DTranspose(512, 2, strides=2, kernel_initializer='he_normal', padding='same')(conv5) | |
conv6 = L.Concatenate()([up6, conv4]) | |
conv6 = L.Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6) | |
conv6 = L.Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6) | |
conv6 = L.Dropout(0.4)(conv6) | |
up7 = L.Conv2DTranspose(256, 2, strides=2, kernel_initializer='he_normal', padding='same')(conv6) | |
conv7 = L.Concatenate()([up7, conv3]) | |
conv7 = L.Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7) | |
conv7 = L.Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7) | |
conv7 = L.Dropout(0.3)(conv7) | |
up8 = L.Conv2DTranspose(128, 2, strides=2, kernel_initializer='he_normal', padding='same')(conv7) | |
conv8 = L.Concatenate()([up8, conv2]) | |
conv8 = L.Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8) | |
conv8 = L.Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8) | |
conv8 = L.Dropout(0.2)(conv8) | |
up9 = L.Conv2DTranspose(64, 2, strides=2, kernel_initializer='he_normal', padding='same')(conv8) | |
conv9 = L.Concatenate()([up9, conv1]) | |
conv9 = L.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9) | |
conv9 = L.Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9) | |
conv9 = L.Dropout(0.1)(conv9) | |
c10 = L.Conv2D(n_classes, 1, activation='softmax', kernel_initializer='he_normal')(conv9) | |
# Add a few non trainable layers to mimic the computation of the crossentropy | |
# loss, so that the actual loss function just has to peform the | |
# aggregation. | |
c11 = L.Lambda(lambda x: x / tf.reduce_sum(x, len(x.get_shape()) - 1, True))(c10) | |
c11 = L.Lambda(lambda x: tf.clip_by_value(x, _epsilon, 1. - _epsilon))(c11) | |
c11 = L.Lambda(lambda x: K.log(x))(c11) | |
weighted_sm = L.multiply([c11, weight_ip]) | |
model = Model(inputs=[ip, weight_ip], outputs=[weighted_sm]) | |
return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment