Created
October 2, 2012 03:47
-
-
Save jaidevd/3816053 to your computer and use it in GitHub Desktop.
Basic extraction, analysis and visualization of PyconIndia 2012 tweets
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import os | |
import json | |
import numpy as np | |
from pandas import DataFrame, concat | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.decomposition import PCA | |
from sklearn.cluster import KMeans | |
from matplotlib.pyplot import imshow, plot, show, figure, title, yticks | |
# Download this file from https://gist.github.com/3809261 | |
filename = os.path.join('pyconindia2012.json') | |
f = open(filename, 'r') | |
############################################################################### | |
# Decoding the json file, getting the data in a pandas dataframe and saving it as | |
# an xls file. | |
############################################################################### | |
tweets = [] | |
for line in f: | |
tweets.append(json.loads(line)) | |
tweeters = [] | |
texts = [] | |
timestamps = [] | |
metadata = [] | |
for tweet in tweets: | |
tweeters.append(tweet['from_user_name']) | |
texts.append(tweet['text']) | |
timestamps.append(tweet['created_at']) | |
metadata.append(tweet['metadata']['result_type']) | |
tweet_dict = { | |
'tweeters':tweeters, 'texts':texts, 'timestamps':timestamps, | |
'metadata':metadata | |
} | |
df = DataFrame(tweet_dict) | |
df.to_excel('pycontweets_pandas.xls') | |
############################################################################### | |
# Processing the text in tweets to remove redundancies | |
############################################################################### | |
# These characters are unwated in the words in a tweet. | |
unchars = ['@','#','http', 'rt', 'RT', 'and', 'at', 'by', 'for', 'in', 'is', | |
'of','on','the', 'two', 'with', 'to', 'was', 'day', 'will', 'it', 'who', | |
'had'] | |
proc_text = [] | |
for text in texts: | |
words = text.split(' ') | |
wordlist = [] | |
for word in words: | |
if np.prod([unchar not in word for unchar in unchars]): | |
wordlist.append(word) | |
s = '' | |
for word in wordlist: | |
s += word + ' ' | |
proc_text.append(s) | |
df['texts'] = proc_text | |
############################################################################### | |
# Tokenizing and analyzing the text in tweets | |
############################################################################### | |
vectorizer = TfidfVectorizer() | |
text_vectorized = vectorizer.fit_transform(proc_text) | |
tv_sum = np.sum(text_vectorized.toarray(), axis=0) | |
plot(tv_sum) | |
show() | |
thresh = input('Enter Threshold:\n') | |
inds = tv_sum > thresh | |
keyword_inds = [] | |
for i in range(len(inds)): | |
if inds[i]: | |
keyword_inds.append(i) | |
keywords = [] | |
for key in vectorizer.vocabulary_: | |
if vectorizer.vocabulary_[key] in keyword_inds: | |
keywords.append(key) | |
for keyword in keywords: | |
if len(keyword)<3: | |
keywords.remove(keyword) | |
keyword_inds.remove(vectorizer.vocabulary_[keyword]) | |
imshow(text_vectorized.toarray().T, aspect='auto') | |
yticks(keyword_inds, tuple(keywords), rotation=0) | |
title('Image Plot of Words in tweets') | |
show() | |
# Making a PCA plot: | |
pca = PCA(2, whiten=True) | |
pc_red = pca.fit_transform(text_vectorized.toarray()) | |
figure() | |
plot(pc_red[:,0], pc_red[:,1], 'ro') | |
title('PCA Plot') | |
show() | |
# Performing K-means clustering | |
k = input('Input cluster numbers:\n') | |
km = KMeans(2) | |
km.fit(pc_red) | |
figure() | |
plot(km.cluster_centers_[:,0], km.cluster_centers_[:,1], 'r+', markersize=20) | |
plot(pc_red[:,0], pc_red[:,1], 'bo') | |
show() |
Whoa... saw this comment just now, five months later. Don't even remember what I did in that script!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Classy - you have forgotten to close the file handler :-)