Created
April 24, 2019 11:21
-
-
Save jakab922/995f3dc190802f81f7eef995c88279e9 to your computer and use it in GitHub Desktop.
Solution for https://codeforces.com/contest/1151/problem/F
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <bits/stdc++.h> | |
using namespace std; | |
using ll = long long; | |
constexpr ll mod = 1000000007; | |
ll fast_pow_mod(ll a, ll b, ll m) { | |
a %= m; | |
if(a == 0ll) return a; | |
ll ret = 1; | |
while(b) { | |
if(b&1ll == 1ll) ret = (ret * a) % m; | |
a = (a * a) % m; | |
b >>= 1; | |
} | |
return ret; | |
} | |
ll mod_inv_prime(ll a, ll m) { | |
// m is assumed to be prime here. | |
return fast_pow_mod(a, m - 2, m); // by Fermat's little theorem | |
} | |
struct RatP { | |
ll nd, p; | |
RatP(ll nom, ll denom, ll _p) : p(_p) { | |
nd = (nom * mod_inv_prime(denom, p)) % p; | |
} | |
RatP(ll _nd, ll _p) : nd(_nd), p(_p) { | |
nd = nd % p; | |
} | |
RatP() { | |
nd = 0ll; | |
p = mod; | |
} | |
}; | |
string show(const RatP &r) { | |
stringstream ss; | |
ss << "(" << r.nd << "," << r.p << ")"; | |
return ss.str(); | |
} | |
RatP unit() { | |
return RatP(1ll, mod); | |
} | |
RatP operator*(const RatP &lhs, const RatP &rhs) { | |
return RatP((lhs.nd * rhs.nd) % lhs.p, lhs.p); | |
} | |
RatP operator+(const RatP &lhs, const RatP &rhs) { | |
return RatP((lhs.nd + rhs.nd) % lhs.p, lhs.p); | |
} | |
template<typename T> | |
ostream &operator<<(ostream &out, const vector<vector<T>> &mat) { | |
for(const auto &row : mat) { | |
for(const auto &el : row) { | |
out << "\t\t" << show(el); | |
} | |
out << endl; | |
} | |
return out; | |
} | |
template<typename T> | |
vector<vector<T>> fast_pow_mat(const vector<vector<T>> &mat, ll b) { | |
ll n = mat.size(); | |
assert(n == mat[0].size()); | |
vector<vector<T>> ret(n, vector<T>(n)); | |
for (int i = 0; i < n; ++i) { | |
ret[i][i] = unit(); | |
} | |
vector<vector<T>> curr = mat; | |
while(b) { | |
if(b & 1ll == 1ll) { | |
ret = ret * curr; | |
} | |
curr = curr * curr; | |
b >>= 1; | |
} | |
return ret; | |
} | |
template<typename T> | |
vector<vector<T>> operator*(const vector<vector<T>> &lhs, const vector<vector<T>> &rhs) { | |
assert(lhs[0].size() == rhs.size()); | |
ll n = lhs.size(), m = rhs[0].size(), o = rhs.size(); | |
vector<vector<T>> ret(n, vector<T>(m)); | |
for (int i = 0; i < n; ++i) { | |
for (int j = 0; j < m; ++j) { | |
for (int k = 0; k < o; ++k) { | |
ret[i][j] = ret[i][j] + lhs[i][k] * rhs[k][j]; | |
} | |
} | |
} | |
return ret; | |
} | |
template<typename T> | |
vector<vector<T>> operator+(const vector<vector<T>> &lhs, const vector<vector<T>> &rhs) { | |
assert(lhs.size() == rhs.size() && lhs[0].size() == rhs[0].size()); | |
ll n = lhs.size(), m = lhs[0].size(); | |
vector<vector<T>> ret(n, vector<T>(m)); | |
for (int i = 0; i < n; ++i) { | |
for (int j = 0; j < m; ++j) { | |
ret[i][j] = lhs[i][j] + rhs[i][j]; | |
} | |
} | |
return ret; | |
} | |
template<typename T> | |
vector<T> operator*(const vector<vector<T>> &mat, const vector<T> &vec) { | |
assert(mat[0].size() == vec.size()); | |
ll n = mat.size(), m = vec.size(); | |
vector<T> ret(n); | |
for (int i = 0; i < n; ++i) { | |
for (int j = 0; j < m; ++j) { | |
ret[i] = ret[i] + mat[i][j] * vec[j]; | |
} | |
} | |
return ret; | |
} | |
ll fac(ll a, ll p) { | |
assert(a >= 0); | |
ll ret = 1ll; | |
while(a > 0) { | |
ret = (ret * a) % p; | |
a--; | |
} | |
return ret; | |
} | |
ll choose(ll a, ll b, ll p) { | |
if(b > a) return 0ll; | |
ll ret = fac(a, p); | |
ret = (ret * mod_inv_prime(fac(b, p), p)) % p; | |
ret = (ret * mod_inv_prime(fac(a - b, p), p)) % p; | |
return ret; | |
} | |
int main() { | |
ll n, k, one = 0ll; | |
cin >> n >> k; | |
ll n2 = choose(n, 2, mod); | |
vector<ll> vec(n); | |
for(int i = 0; i < n; i++) { | |
cin >> vec[i]; | |
if(vec[i] == 1ll) one++; | |
} | |
if(one == 0ll || one == n) { | |
cout << 1 << endl; | |
return 0; | |
} | |
vector<vector<RatP>> mat(one + 1, vector<RatP>(one + 1, RatP(0ll, mod))); | |
ll mi = max(0ll, 2 * one - n); | |
for (int i = mi; i < one + 1; ++i) { | |
ll right_one = i, left_one = one - i; | |
ll right_zero = one - right_one, left_zero = n - one - left_one; | |
mat[i][i] = RatP( | |
choose(one, 2, mod) + | |
choose(n - one, 2, mod) + | |
choose(left_zero, 1, mod) * choose(right_zero, 1, mod) + | |
choose(left_one, 1, mod) * choose(right_one, 1, mod), | |
n2, mod); | |
if(i != mi) { | |
mat[i - 1][i] = RatP(choose(right_one, 1, mod) * choose(left_zero, 1, mod), n2, mod); | |
} | |
if(i != one) { | |
mat[i + 1][i] = RatP(choose(left_one, 1, mod) * choose(right_zero, 1, mod), n2, mod); | |
} | |
} | |
ll right = 0ll; | |
for(int i = 0; i < one; i++) { | |
if(vec[n - 1 - i] == 1ll) right++; | |
} | |
vector<RatP> state(one + 1, RatP(0ll, mod)); | |
state[right] = RatP(1ll, mod); | |
auto matk = fast_pow_mat(mat, k); | |
auto statek = matk * state; | |
cout << statek[one].nd << endl; | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment