-
-
Save jake/7b6725e181c7446521eaa167c593e90e to your computer and use it in GitHub Desktop.
Spring Physics - Oscillation and Critical Dampening on Quaternions
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Resources | |
// https://burakkanber.com/blog/physics-in-javascript-car-suspension-part-1-spring-mass-damper/ | |
// https://gafferongames.com/post/spring_physics/ | |
// https://gafferongames.com/post/physics_in_3d/ | |
// http://digitalopus.ca/site/pd-controllers/ | |
// .. Has things about Torque | |
class QuaterionSpring{ | |
constructor( damping=5, stiffness=30 ){ | |
this.velocity = new Float32Array(4); | |
this.stiffness = stiffness; | |
this.damping = damping;; | |
} | |
_velLenSqr(){ | |
return this.velocity[0] ** 2 + this.velocity[1] ** 2 + | |
this.velocity[2] ** 2 + this.velocity[3] ** 2; | |
} | |
// Harmonic oscillation | |
// https://stackoverflow.com/questions/44688112/spring-physics-applied-to-quaternions-using-python | |
oscillationStep(cq, target, dt){ | |
// Check when the spring is done. | |
let dot = Quat.dot(cq, target); | |
if( dot >= 0.9999 && this._velLenSqr() < 0.000001 ){ | |
cq.copy( target ); | |
return; | |
} | |
//......................................... | |
let tq = new Quat(); | |
if( dot < 0 ){ // Use the closest rotation | |
tq[0] = -target[0]; | |
tq[1] = -target[1]; | |
tq[2] = -target[2]; | |
tq[3] = -target[3]; | |
}else tq.copy( target ); | |
//......................................... | |
// displacement = current - target; | |
// spring_force = (stiffness * displacement - damper * velocity ) / mass | |
// velocity += spring_force * deltaTime; // Acceleration | |
// current += velocity * deltaTime | |
//tried with MASS, took it out cause no need for it at the moment. | |
//this.velocity[0] += ((k * ( cq[0] - tq[0] ) - d * this.velocity[0]) / m) * dt; | |
//this.velocity[1] += ((k * ( cq[1] - tq[1] ) - d * this.velocity[1]) / m) * dt; | |
//this.velocity[2] += ((k * ( cq[2] - tq[2] ) - d * this.velocity[2]) / m) * dt; | |
//this.velocity[3] += ((k * ( cq[3] - tq[3] ) - d * this.velocity[3]) / m) * dt; | |
this.velocity[0] += (-this.stiffness * ( cq[0] - tq[0] ) - this.damping * this.velocity[0]) * dt; | |
this.velocity[1] += (-this.stiffness * ( cq[1] - tq[1] ) - this.damping * this.velocity[1]) * dt; | |
this.velocity[2] += (-this.stiffness * ( cq[2] - tq[2] ) - this.damping * this.velocity[2]) * dt; | |
this.velocity[3] += (-this.stiffness * ( cq[3] - tq[3] ) - this.damping * this.velocity[3]) * dt; | |
//......................................... | |
cq[0] += this.velocity[0] * dt; | |
cq[1] += this.velocity[1] * dt; | |
cq[2] += this.velocity[2] * dt; | |
cq[3] += this.velocity[3] * dt; | |
//console.log(cq); | |
cq.normalize(); | |
} | |
// Critically Damped Spring | |
criticallyStep(cq, target, dt){ | |
// Check when the spring is done. | |
let dot = Quat.dot(cq, target); | |
if( dot >= 0.9999 && this._velLenSqr() < 0.000001 ){ | |
cq.copy( target ); | |
return; | |
} | |
//......................................... | |
let tq = new Quat(); | |
if( dot < 0 ){ // Use the closest rotation | |
tq[0] = -target[0]; | |
tq[1] = -target[1]; | |
tq[2] = -target[2]; | |
tq[3] = -target[3]; | |
}else tq.copy( target ); | |
//......................................... | |
// n1 = velocity - ( currentRot - targerRot ) * ( omega * omega * dt ); | |
// n2 = 1 + omega * dt; | |
// newVelocity = n1 / ( n2 * n2 ); | |
// currentRot += newVelocity * dt; | |
let dSqrDt = this.damping * this.damping * dt, | |
n2 = 1 + this.damping * dt, | |
n2Sqr = n2 * n2; | |
this.velocity[0] = ( this.velocity[0] - ( cq[0] - tq[0] ) * dSqrDt ) / n2Sqr; | |
this.velocity[1] = ( this.velocity[1] - ( cq[1] - tq[1] ) * dSqrDt ) / n2Sqr; | |
this.velocity[2] = ( this.velocity[2] - ( cq[2] - tq[2] ) * dSqrDt ) / n2Sqr; | |
this.velocity[3] = ( this.velocity[3] - ( cq[3] - tq[3] ) * dSqrDt ) / n2Sqr; | |
//......................................... | |
cq[0] += this.velocity[0] * dt; | |
cq[1] += this.velocity[1] * dt; | |
cq[2] += this.velocity[2] * dt; | |
cq[3] += this.velocity[3] * dt; | |
cq.normalize(); | |
return cq; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment