Created
October 12, 2022 09:39
-
-
Save jakobrs/0a8d00845ece487b10ad761fa3d8e681 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <cstdint> | |
#include <iostream> | |
#include <tuple> | |
#include <utility> | |
const std::size_t COUNT = 9; | |
const std::uint8_t primes[COUNT] = {2, 3, 7, 11, 13, 17, 19, 23, 29}; | |
std::pair<int64_t, int64_t> extended_gcd(int a, int b) { | |
auto [old_r, r] = std::pair{a, b}; | |
auto [old_s, s] = std::pair{1, 0}; | |
auto [old_t, t] = std::pair{0, 1}; | |
while (r != 0) { | |
auto quotient = old_r / r; | |
std::tie(old_r, r) = std::pair{r, old_r - quotient * r}; | |
std::tie(old_s, s) = std::pair{s, old_s - quotient * s}; | |
std::tie(old_t, t) = std::pair{t, old_t - quotient * t}; | |
} | |
return {old_s, old_t}; | |
} | |
int64_t combine(int64_t a1, int64_t a2, int64_t n1, int64_t n2) { | |
auto [m1, m2] = extended_gcd(n1, n2); | |
return (a1 * m2 * n2 + a2 * m1 * n1); | |
} | |
struct number { | |
std::uint8_t remainders[COUNT]; | |
number(int n) { | |
for (int i = 0; i < COUNT; i++) { | |
remainders[i] = n % primes[i]; | |
} | |
} | |
number operator+(const number &rhs) const noexcept { | |
number result = 0; | |
for (int i = 0; i < COUNT; i++) { | |
result.remainders[i] = (remainders[i] + rhs.remainders[i]) % primes[i]; | |
} | |
return result; | |
} | |
number &operator+=(const number &rhs) noexcept { | |
for (int i = 0; i < COUNT; i++) { | |
remainders[i] = (remainders[i] + rhs.remainders[i]) % primes[i]; | |
} | |
return *this; | |
} | |
number operator-() const noexcept { | |
number result = *this; | |
for (int i = 0; i < COUNT; i++) { | |
result.remainders[i] = (primes[i] - result.remainders[i]) % primes[i]; | |
} | |
return result; | |
} | |
number operator-(const number &rhs) const noexcept { return *this + -rhs; } | |
number &operator-=(const number &rhs) noexcept { | |
*this += -rhs; | |
return *this; | |
} | |
number operator*(const number &rhs) const noexcept { | |
number result = 0; | |
for (int i = 0; i < COUNT; i++) { | |
result.remainders[i] = (remainders[i] * rhs.remainders[i]) % primes[i]; | |
} | |
return result; | |
} | |
number &operator*=(const number &rhs) noexcept { | |
for (int i = 0; i < COUNT; i++) { | |
remainders[i] = (remainders[i] * rhs.remainders[i]) % primes[i]; | |
} | |
return *this; | |
} | |
operator int() const noexcept { | |
int64_t a = 0; | |
int64_t n = 1; | |
for (int i = 0; i < COUNT; i++) { | |
a = combine(a, remainders[i], n, primes[i]); | |
n *= primes[i]; | |
a %= n; | |
a += n; | |
a %= n; | |
} | |
return a; | |
} | |
}; | |
int main() { | |
for (int i = 1'000'000; i < 1'000'001'000; i++) { | |
std::cout << i << ": " << (int)number(i) << '\n'; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment