Created
November 30, 2017 23:25
-
-
Save jamesbeedy/c84c0d252b2dd82b8580767a42db1d1c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyspark.sql import SparkSession | |
from pyspark.ml import Pipeline | |
from pyspark.ml.classification import LogisticRegression | |
from pyspark.ml.feature import HashingTF, Tokenizer | |
import random | |
from random import randint | |
spark = SparkSession.builder.master("local").appName("Word Count").getOrCreate() | |
my_list = [] | |
rand_ints = [randint(0,1000), randint(0,1000)] | |
def randstring(length=10): | |
valid_letters='ABCDEFGHIJKLMNOPQRSTUVWXYZ' | |
return ''.join((random.choice(valid_letters) for i in xrange(length))) | |
for i in range(0,100000): | |
my_int = 0.0 | |
if i in rand_ints: | |
my_int = 1.0 | |
my_list.append((i, randstring(100000), my_int)) | |
# Prepare training documents from a list of (id, text, label) tuples. | |
training = spark.createDataFrame(my_list, ["id", "text", "label"]) | |
# Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr. | |
tokenizer = Tokenizer(inputCol="text", outputCol="words") | |
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features") | |
lr = LogisticRegression(maxIter=10, regParam=0.001) | |
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr]) | |
# Fit the pipeline to training documents. | |
model = pipeline.fit(training) | |
# Prepare test documents, which are unlabeled (id, text) tuples. | |
my_test_data = [] | |
for i in range(100000, 150000): | |
my_test_data.append((i, randstring(100000))) | |
test = spark.createDataFrame(my_test_data, ["id", "text"]) | |
# Make predictions on test documents and print columns of interest. | |
prediction = model.transform(test) | |
selected = prediction.select("id", "text", "probability", "prediction") | |
for row in selected.collect(): | |
rid, text, prob, prediction = row | |
print("(%d, %s) --> prob=%s, prediction=%f" % (rid, text, str(prob), prediction)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment