Last active
July 25, 2016 17:57
-
-
Save jameskyle/ed419f078f834a8dd538092b50e8f86c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import division | |
import matplotlib | |
matplotlib.use('Agg') | |
import time | |
import sys | |
import math | |
import glob | |
import os | |
import cv2 | |
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
import numpy as np | |
from itertools import cycle | |
cv2.ocl.setUseOpenCL(False) | |
def points(a,b): | |
return np.array(np.meshgrid(a, b)).reshape(2,len(a)*len(b)).T | |
def similarity_metric(volume): | |
fvolume = volume.astype(float) | |
diffs = np.zeros((len(fvolume), len(fvolume))) | |
print("Calculating similarity metric for volume of length {0}".format(len(fvolume))) | |
for i in range(len(fvolume)): | |
if (i % 10) == 0: | |
print("Calculating row {0} of {1}".format(i, len(fvolume))) | |
for j in range(len(fvolume)): | |
if i != j: | |
diffs[i,j] = ((fvolume[i] - fvolume[j])**2).sum() ** 0.5 | |
else: | |
diffs[i,j] = 0.0 | |
diffs /= diffs.mean() | |
#output = np.sqrt(((images - images[:, np.newaxis])**2).sum(axis=(2,3,4))) | |
#output /= output.mean() | |
return diffs | |
def transition_diff(ssd_difference): | |
output = np.zeros((ssd_difference.shape[0] - 4, | |
ssd_difference.shape[1] - 4), | |
dtype=ssd_difference.dtype) | |
kernel = np.eye(5) * binomial_filter() | |
output[:] = cv2.filter2D(ssd_difference, -1, kernel)[2:-2,2:-2] | |
return output | |
def biggest_loop(trans_diff, alpha): | |
start = 0 | |
end = 0 | |
largest_score = 0 | |
for i in range(trans_diff.shape[0]): | |
for j in range(trans_diff.shape[1]): | |
diff = trans_diff[j,i] | |
score = (1.0*alpha) * (j - i) - diff | |
if score > largest_score: | |
largest_score, start, end = score, i, j | |
return start, end | |
def synthesize_loop(video_volume, start, end): | |
print("Synthesizing volume with start {0} and end {1}".format(start, end)) | |
return video_volume[start:end+1] | |
def binomial_filter(): | |
return np.array([1 / 16., 1 / 4., 3 / 8., 1 / 4., 1 / 16.], dtype=float) | |
def get_frames(root, masks=False, excluded=None, green=False, sensitivity=33, method="MOG"): | |
search = map(lambda x: "{0}/*.{1}".format(root, x), ["mp4", "mov", "m4v"]) | |
files = sum(map(glob.glob, search), []) | |
if len(files) == 0: | |
print("Could not find an input file for {0}".format(root)) | |
exit(1) | |
if os.path.exists("{0}/expanded/0000.png".format(root)): | |
print("Frames already created for {0}, skipping...".format(root)) | |
return | |
excluded = excluded or list() | |
dispatch = { | |
'MOG': cv2.bgsegm.createBackgroundSubtractorMOG, | |
'MOG2': cv2.createBackgroundSubtractorMOG2, | |
'GMG': cv2.bgsegm.createBackgroundSubtractorGMG, | |
'KNN': cv2.createBackgroundSubtractorKNN, | |
'GREEN': createBackgroundSubtractorChromaKey, | |
} | |
cap = cv2.VideoCapture(files[0]) | |
fgbg = dispatch[method]() | |
framedir = "{0}/expanded".format(root) | |
maskdir = framedir.replace("expanded", "masks") | |
if not os.path.exists(framedir): os.mkdir(framedir) | |
if not os.path.exists(maskdir) and masks: os.mkdir(maskdir) | |
count = 0 | |
ret, frame = cap.read() | |
fgmask = fgbg.apply(frame) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if ret != True: break | |
if masks: | |
if not count in excluded: | |
fgmask = fgbg.apply(frame, fgmask) | |
else: | |
fgmask = np.zeros(frame.shape) | |
if method == "GREEN": | |
mask = fgmask.copy() | |
mask = cv2.normalize(mask, mask, 0, 1, cv2.NORM_MINMAX) | |
frame = frame * cv2.merge([mask, mask, mask]) | |
out = "%s/%04d.png" % (maskdir, count) | |
imwrite(out, fgmask) | |
out = "%s/%04d.png" % (framedir, count) | |
imwrite(out, frame) | |
count += 1 | |
cap.release() | |
class ChromaKey(object): | |
def __init__(self): | |
self.sensitivity = 33 | |
def apply(self, frame, fgmask=None): | |
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) | |
lower = np.array([60-self.sensitivity, 100, 90]) | |
upper = np.array([60+self.sensitivity, 255, 255]) | |
mask = cv2.inRange(hsv, lower, upper) | |
return cv2.bitwise_not(mask) | |
def createBackgroundSubtractorChromaKey(): | |
return ChromaKey() | |
def get_texture(images, alpha=1.0): | |
print("calculating similarity matrix...") | |
ssd_diff = similarity_metric(images) | |
print("trans_diff...") | |
trans_diff = transition_diff(ssd_diff) | |
print("biggest_loop ...") | |
start, end = biggest_loop(trans_diff, alpha) | |
print("diff3...") | |
diff3 = np.zeros(trans_diff.shape, float) | |
for i in range(trans_diff.shape[0]): | |
for j in range(trans_diff.shape[1]): | |
diff3[i, j] = alpha * (i - j) - trans_diff[i, j] | |
return (viz_difference(ssd_diff), | |
viz_difference(trans_diff), | |
viz_difference(diff3), | |
synthesize_loop(images, start + 2, end + 2)) | |
def viz_difference(diff): | |
return (((diff - diff.min()) / | |
(diff.max() - diff.min())) * 255).astype(np.uint8) | |
def frames(first, second, size): | |
# gather all images | |
f1 = glob.glob("{0}/expanded/*.png".format(first)) | |
f2 = glob.glob("{0}/expanded/*.png".format(second)) | |
masks = glob.glob("{0}/masks/*.png".format(second)) | |
# resolve mismatches in frames by cycling | |
if len(f1) < len(f2): | |
c = cycle(f1) | |
f1 = [next(c) for _ in range(len(f2))] | |
elif len(f2) < len(f1): | |
c = cycle(f2) | |
m = cycle(masks) | |
f2 = [next(c) for _ in range(len(f1))] | |
masks = [next(m) for _ in range(len(f1))] | |
files = zip(f1, f2, masks) | |
for f1, f2, m in files: | |
black = cv2.resize(cv2.imread(f1), size) | |
white = cv2.resize(cv2.imread(f2), size) | |
mask = cv2.resize(cv2.imread(m), size) | |
#mask[mask > 128] = 255 | |
#mask[mask <= 128] = 0 | |
mask = mask.astype(float) / 255 | |
yield (black, white, mask) | |
def depth(shape): | |
return int(math.floor(math.log(min(shape), 2))) - 4 | |
def gauss(black, white, mask, depth): | |
pyr_white, pyr_black, pyr_mask = [white], [black], [mask] | |
for _ in range(depth): | |
pyr_white.append(cv2.pyrDown(pyr_white[-1])) | |
pyr_black.append(cv2.pyrDown(pyr_black[-1])) | |
pyr_mask.append(cv2.pyrDown(pyr_mask[-1])) | |
return pyr_white, pyr_black, pyr_mask | |
def laplacian(gblack, gwhite): | |
lblack, lwhite = [gblack[-1]], [gwhite[-1]] | |
for i in range(len(gblack)-1, 0, -1): | |
size = gblack[i-1].shape[1], gblack[i-1].shape[0] | |
GE = cv2.pyrUp(gblack[i], dstsize=size) | |
L = cv2.subtract(gblack[i-1], GE) | |
lblack.append(L) | |
size = gwhite[i-1].shape[1], gwhite[i-1].shape[0] | |
GE = cv2.pyrUp(gwhite[i], dstsize=size) | |
L = cv2.subtract(gwhite[i-1], GE) | |
lwhite.append(L) | |
return lblack, lwhite | |
def blend(first, second, outdir, morph=False, size=(400,300)): | |
print("Blending frames....") | |
if morph: | |
print("Morphing masks enabled") | |
nframes = [] | |
mcount = 0 | |
for black, white, mask in frames(first, second, size=size): | |
if morph: | |
#kernel = np.ones((5,5), dtype=np.uint8) | |
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3)) | |
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=3) | |
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=3) | |
outfile = "{0}/morphed/{1:04d}.png".format(outdir, mcount) | |
imwrite(outfile, mask) | |
mcount += 1 | |
d = depth(white.shape[:-1]) | |
gwhite, gblack, gmask = gauss(white, black, mask, d) | |
lwhite, lblack = laplacian(gwhite, gblack) | |
pyr_blended = [] | |
gmask.reverse() | |
for w, b, g in zip(lwhite, lblack, gmask): | |
output = g * b + (1 - g) * w | |
pyr_blended.append(output) | |
img = pyr_blended[0] | |
for i in range(1,len(pyr_blended)): | |
size = pyr_blended[i].shape[1], pyr_blended[i].shape[0] | |
img = cv2.pyrUp(img, dstsize=size) | |
img = cv2.add(img, pyr_blended[i]) | |
nframes.append(img) | |
return nframes | |
def normalize(frame): | |
norm = cv2.normalize(frame, | |
frame, | |
alpha=0, | |
beta=255, | |
norm_type=cv2.NORM_MINMAX, | |
dtype=cv2.CV_8UC3) | |
return norm | |
def create_texture(nframes, outdir, alpha=1.0): | |
print("Saving textures to {0}".format(outdir)) | |
fourcc = cv2.VideoWriter_fourcc(*'avc1') | |
outfile = '{0}/texture/output.mp4'.format(outdir) | |
out = cv2.VideoWriter(outfile, fourcc, 10, nframes[0].shape[-2:-4:-1]) | |
diff1, diff2, diff3, output = get_texture(nframes, alpha) | |
imwrite("{0}/diffs/diff1.png".format(outdir), diff1) | |
imwrite("{0}/diffs/diff2.png".format(outdir), diff2) | |
imwrite("{0}/diffs/diff3.png".format(outdir), diff3) | |
fig = plt.figure() | |
ax = fig.add_subplot(111) | |
ax.set_axis_off() | |
ims = [] | |
for idx, frame in enumerate(output): | |
out.write(frame) | |
outfile = "{0}/texture/frames/{1:04d}.png".format(outdir, idx) | |
imwrite(outfile, frame) | |
b, g, r = cv2.split(frame) | |
rgb = cv2.merge([r,g,b]) | |
ims.append([ax.imshow(rgb)]) | |
out.release() | |
# http://www.nooganeer.com/his/projects/image-processing/making-a-gif-with-opencv-and-scikit-image-in-python/ | |
ani = animation.ArtistAnimation(fig, ims, interval=2, repeat_delay=0, blit=False) | |
outfile = "{0}/texture/animation.gif".format(outdir) | |
ani.save(outfile, writer='imagemagick') | |
def imwrite(outfile, img): | |
if not cv2.imwrite(outfile, img): | |
print("ERROR: Failed to write image to {0}".format(outfile)) | |
def write_frames(nframes, output): | |
print("Saving frames to cache") | |
for idx, frame in enumerate(nframes): | |
imwrite("{0}/frames/{1:04d}.png".format(output, idx), frame) | |
def parse_args(args): | |
alpha = 1.0 | |
if len(args) > 0: | |
alpha = float(args[0]) | |
print("Using alpha {0}".format(alpha)) | |
return alpha | |
def setup(first, second, method): | |
output = "results/{0}_{1}_{2}_{3}".format(first, second, method, time.strftime("%Y%m%d%H%M%S")) | |
for d in ["diffs", "texture/frames", "morphed", "frames"]: | |
os.makedirs("{0}/{1}".format(output, d)) | |
excluded = sum([range(11), range(56,120)], []) | |
return output, excluded | |
def run(first, second, output, method): | |
print("Getting frames for {0}....".format(first)) | |
get_frames(first) | |
print("Getting frames for {0}....".format(second)) | |
get_frames(second, masks=True, | |
excluded=None, | |
green=True, | |
sensitivity=33, | |
method=method | |
) | |
print("Computing blended frames....") | |
normed = [normalize(frame) for frame in | |
blend(first, second, output, morph=True)] | |
nframes = np.array(normed) | |
print("Saving {0} blended frames...".format(len(nframes))) | |
write_frames(nframes, output) | |
return nframes | |
def clean(inputs): | |
for d in inputs: | |
print("Cleaning out files in {0}".format(d)) | |
for out in ["masks", "expanded"]: | |
for image in glob.glob("{0}/{1}/*.png".format(d, out)): | |
os.remove(image) | |
def main(first="outside", second="dragon", method="MOG"): | |
alpha = parse_args(sys.argv[1:]) | |
output, excluded = setup(first, second, method) | |
nframes = run(first, second, output, method) | |
create_texture(nframes, output, alpha) | |
if __name__ == "__main__": | |
#for second in ["dragon", "crowd", "dolphins", "bloodborne", "walkers2", "walkers"]: | |
for second in ["walkers2", "walkers"]: | |
for method in ['MOG', 'MOG2', 'GMG', 'KNN', 'GREEN']: | |
msg = "Running trial for first {0}, second {1}, using method {2}" | |
print(msg.format("outside", second, method)) | |
clean(["outside", second]) | |
main("outside", second, method) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment