Created
November 22, 2018 07:17
-
-
Save jamesmcintyre/ae293a329aaf531bd0d9211c012ffb53 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf, sys | |
image_path = sys.argv[1] | |
def read_tensor_from_image_file(file_name, | |
input_height=299, | |
input_width=299, | |
input_mean=0, | |
input_std=255): | |
input_name = "file_reader" | |
output_name = "normalized" | |
file_reader = tf.read_file(file_name, input_name) | |
if file_name.endswith(".png"): | |
image_reader = tf.image.decode_png( | |
file_reader, channels=3, name="png_reader") | |
elif file_name.endswith(".gif"): | |
image_reader = tf.squeeze( | |
tf.image.decode_gif(file_reader, name="gif_reader")) | |
elif file_name.endswith(".bmp"): | |
image_reader = tf.image.decode_bmp(file_reader, name="bmp_reader") | |
else: | |
image_reader = tf.image.decode_jpeg( | |
file_reader, channels=3, name="jpeg_reader") | |
float_caster = tf.cast(image_reader, tf.float32) | |
dims_expander = tf.expand_dims(float_caster, 0) | |
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width]) | |
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std]) | |
sess = tf.Session() | |
result = sess.run(normalized) | |
return result | |
# Read in the image_data | |
# image_data = tf.gfile.FastGFile(image_path, 'rb').read() | |
image_data = read_tensor_from_image_file(image_path) | |
# Loads label file, strips off carriage return | |
label_lines = [line.rstrip() for line | |
in tf.gfile.GFile("/share_vol/retrained_labels.txt")] | |
# Unpersists graph from file | |
with tf.gfile.FastGFile("/share_vol/retrained_graph.pb", 'rb') as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString(f.read()) | |
_ = tf.import_graph_def(graph_def, name='') | |
# Feed the image_data as input to the graph and get first prediction | |
with tf.Session() as sess: | |
# tensor_name_list = [tensor.name for tensor in tf.get_default_graph().as_graph_def().node] | |
# for tensor_name in tensor_name_list: | |
# print(tensor_name, '\n') | |
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0') | |
predictions = sess.run(softmax_tensor, | |
{'Placeholder:0': image_data}) | |
# Sort to show labels of first prediction in order of confidence | |
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1] | |
for node_id in top_k: | |
human_string = label_lines[node_id] | |
score = predictions[0][node_id] | |
print('%s (score = %.5f)' % (human_string, score)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Works great! Just replace
FastGFile
withGFile
.