Created
March 16, 2018 07:15
-
-
Save jamespaultg/969e353484433af87c43811868ee4098 to your computer and use it in GitHub Desktop.
Decision tree and feature importance
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from sklearn.tree import DecisionTreeClassifier, export_graphviz | |
| tree = DecisionTreeClassifier(max_depth=3,random_state=0) | |
| tree.fit(X_train,y_train) | |
| plt.figure(figsize=(20, 10)) | |
| indices = np.argsort(tree.feature_importances_)[::-1] | |
| #indices = np.argsort(tree.feature_importances_)[::1] | |
| # Visualise the importance of the features | |
| # To get your top 10 feature names | |
| features_sorted = [] | |
| for i in range(10): | |
| features_sorted.append(features[indices[i]]) | |
| # Now plot | |
| plt.figure() | |
| plt.barh(np.arange(1,11,1), tree.feature_importances_[indices[range(10)]], color='blue', align='center') | |
| plt.yticks(np.arange(1,11,1),features_sorted, rotation='horizontal',fontsize=10) | |
| plt.gca().invert_yaxis() | |
| plt.show(); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment