Created
November 1, 2017 17:41
-
-
Save jamesr66a/57d3592f06aa31e95d068894cd9eba6f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef CONV_TBC_OP_H | |
#define CONV_TBC_OP_H | |
#include <ATen/ATen.h> | |
#include <caffe2/core/context.h> | |
#include <caffe2/core/operator.h> | |
namespace caffe2 { | |
using at::Half; | |
std::function<void(void*)> deleterFor(at::Tensor t) { | |
// return a closure that holds a handle to t until it is called | |
// to keep the aten memory alive | |
return [t](void * ptr) mutable { | |
t.reset(); | |
}; | |
} | |
template <class Context> | |
class ConvTBCOp : public Operator<Context> { | |
public: | |
USE_OPERATOR_CONTEXT_FUNCTIONS; | |
ConvTBCOp(const OperatorDef& operator_def, Workspace* ws) | |
: Operator<Context>(operator_def, ws), | |
pad_(OperatorBase::GetSingleArgument<int>("pad", 0)) {} | |
bool RunOnDevice() override { | |
at::Tensor input = tensorWrapping(Input(0)); | |
at::Tensor weight = tensorWrapping(Input(1)); | |
at::Tensor bias = tensorWrapping(Input(2)); | |
auto input_size = input.sizes(); | |
auto ilen = input_size[0]; | |
auto batchSize = input_size[1]; | |
auto inputPlanes = input_size[2]; | |
auto kw = weight.sizes()[0]; | |
long long olen = input_size[0] - kw + 1 + pad_ * 2; | |
int pad = (olen - ilen + kw - 1) / 2; | |
Output(0)->Resize(input_size[0] - kw + 1 + pad_ * 2, batchSize, weight.sizes()[2]); | |
Output(0)->template mutable_data<float>(); | |
at::Tensor output = tensorWrapping(*Output(0)); | |
auto output_size = output.sizes(); | |
auto outputPlanes = output_size[2]; | |
// input * weights + bias -> output_features | |
output.copy_(bias.expand(output.sizes())); | |
for (int k = 0; k < kw; k++) { | |
int iShift = std::max(0, k - pad); | |
int oShift = std::max(0, pad - k); | |
int t = std::min(ilen + pad - k, olen) - oShift; | |
// Note: gemm assumes column-major matrices | |
// input is l*m (row-major) | |
// weight is m*r (row-major) | |
// output is l*r (row-major) | |
if (t > 0) { | |
auto W = weight[k]; | |
auto I = input.narrow(0, iShift, t).view({t * batchSize, inputPlanes}); | |
auto O = output.narrow(0, oShift, t).view({t * batchSize, outputPlanes}); | |
O.addmm_(I, W); | |
} | |
} | |
assignTo(Output(0), output); | |
return true; | |
} | |
private: | |
TypeMeta typeMetaFor(const at::Tensor & t) { | |
return typeMetaFor(t.type().scalarType()); | |
} | |
TypeMeta typeMetaFor(at::ScalarType st) { | |
#define DEFINE_CASE(ctype,aten_name,_) \ | |
case at::k##aten_name: \ | |
return TypeMeta::Make<ctype>(); | |
switch(st) { | |
AT_FORALL_SCALAR_TYPES(DEFINE_CASE) | |
default: | |
CAFFE_THROW("Unknown ATen Type"); | |
} | |
#undef DEFINE_CASE | |
} | |
at::ScalarType atScalarTypeFor(const TypeMeta & meta) { | |
#define DEFINE_IF(ctype,aten_name,_) \ | |
if(meta.Match<ctype>()) { \ | |
return at::k##aten_name; \ | |
} | |
AT_FORALL_SCALAR_TYPES(DEFINE_IF) | |
#undef DEFINE_IF | |
CAFFE_THROW("Unknown type meta"); // TODO: improve error message... | |
} | |
at::Type & typeFor(const Tensor<Context> & ten) { | |
return at::getType(at::Backend::CPU, atScalarTypeFor(ten.meta())); | |
} | |
const at::Tensor tensorWrapping(const Tensor<Context>& ten) { | |
return typeFor(ten).tensorFromBlob(const_cast<void*>(ten.raw_data()), ten.dims()); | |
} | |
void assignTo(Tensor<Context>* dst, const at::Tensor& src_) { | |
at::Tensor src = src_.contiguous(); | |
auto at_sizes = src.sizes(); | |
std::vector<int64_t> dims(at_sizes.begin(), at_sizes.end()); | |
dst->Resize(dims); | |
dst->ShareExternalPointer(src.data_ptr(), typeMetaFor(src), 0, deleterFor(src)); | |
} | |
int pad_; | |
}; | |
} // namespace caffe2 | |
#endif /* CONV_TBC_OP_H */ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment