Created
November 11, 2021 19:13
-
-
Save jamesr66a/d36bd887459e9089910120bb9a489ff5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.fx | |
import operator | |
from torch.fx.node import map_arg | |
from torch.fx.passes.shape_prop import ShapeProp | |
def binary_mapping(op): | |
def f(a, b): | |
return op(a, b) | |
return f | |
decomposition_rules = {} | |
binary_decompositions = [ | |
(operator.add, torch.add), | |
] | |
for old, new in binary_decompositions: | |
decomposition_rules[old] = binary_mapping(new) | |
def decompose(model: torch.nn.Module, sample_inputs) -> torch.nn.Module: | |
# Run it multiple times so we converge to a fixed point. | |
for _ in range(5): | |
model = torch.fx.symbolic_trace(model) | |
ShapeProp(model).propagate(*sample_inputs) | |
new_graph = torch.fx.Graph() | |
env = {} | |
tracer = torch.fx.proxy.GraphAppendingTracer(new_graph) | |
for node in model.graph.nodes: | |
if node.op == 'call_function' and node.target in decomposition_rules: | |
proxy_args = map_arg(node.args, lambda n: torch.fx.Proxy(env[n.name], tracer)) | |
proxy_kwargs = map_arg(node.kwargs, lambda n: torch.fx.Proxy(env[n.name], tracer)) | |
new_node = decomposition_rules[node.target](*proxy_args, **proxy_kwargs).node | |
env[node.name] = new_node | |
else: | |
new_node = new_graph.node_copy(node, lambda x: env[x.name]) | |
env[node.name] = new_node | |
model = torch.fx.GraphModule(model, new_graph) | |
return model | |
class SimpleAddModule(torch.nn.Module): | |
def __init__(self): | |
super(SimpleAddModule, self).__init__() | |
def forward(self, x, y): | |
return x + y | |
x = torch.randn((4, 4)) | |
y = torch.randn((4, 4)) | |
model = SimpleAddModule() | |
traced_model = decompose(model, (x, y)) | |
print(traced_model) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment