Skip to content

Instantly share code, notes, and snippets.

@jamesrajendran
Last active June 13, 2017 07:29
Show Gist options
  • Save jamesrajendran/501d99a57272cc34841df573c74a7cc0 to your computer and use it in GitHub Desktop.
Save jamesrajendran/501d99a57272cc34841df573c74a7cc0 to your computer and use it in GitHub Desktop.
from sklearn.cross_validation import train_test_split
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4 )
logreg = LogisticRegression()
logreg.fit(X_train,y_train)
y_pred = logreg.predict(X_test)
print('test comparison LR ', metrics.accuracy_score(y_test,y_pred))
knn = KNeighborsClassifier()
knn.fit(X_train,y_train)
k_pred = knn.predict(X_test)
print('test comparison KNN ', metrics.accuracy_score(y_test,k_pred) )
k_range = range(1,26)
scores = []
for k in k_range:
knn = KNeighborsClassifier(n_neighbors= k)
knn.fit(X_train, y_train)
k_pred =knn.predict(X_test)
scores.append(metrics.accuracy_score(y_test, k_pred) )
print(scores)
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(k_range, scores)
plt.xlabel('value for K')
plt.ylabel('metric scores')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment