Skip to content

Instantly share code, notes, and snippets.

@jamesrajendran
Last active June 13, 2017 06:53
Show Gist options
  • Save jamesrajendran/5a9f34e3b57e0384361eab58b192e29c to your computer and use it in GitHub Desktop.
Save jamesrajendran/5a9f34e3b57e0384361eab58b192e29c to your computer and use it in GitHub Desktop.
metrics comparison of KNeighborClassifier and LinearRegression
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target
logreg = LogisticRegression()
logreg.fit(X,y)
ypred = logreg.predict(X)
print('logistic regression: ', metrics.accuracy_score(ypred,y))
knn5 = KNeighborsClassifier(n_neighbors=5)
knn5.fit(X,y)
kpred5 = knn5.predict(X)
print('KNeighbors 5 Classification: ', metrics.accuracy_score(kpred5,y))
knn1 = KNeighborsClassifier(n_neighbors=1)
knn1.fit(X,y)
kpred1 = knn.predict(X)
print('KNeighbors 1 Classification: ', metrics.accuracy_score(kpred1,y))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment