Last active
October 12, 2015 14:49
-
-
Save jamesthomson/b9fb6afacab2dcbe95e8 to your computer and use it in GitHub Desktop.
process to predict gender based on lastfm data
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
%matplotlib inline | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import numpy as np | |
plays = pd.read_table("usersha1-artmbid-artname-plays-sample.tsv", usecols=[0, 2, 3], names=['user', 'artist', 'plays']) | |
users = pd.read_table("usersha1-profile-sample.tsv", usecols=[0, 1], names=['user', 'gender']) | |
users=users.dropna() | |
genders=pd.get_dummies(users['gender']) | |
users=users.join(genders) | |
#top_artists=plays.groupby('artist').size().order(ascending=False)[:50] | |
artists=plays.groupby('artist').size() | |
top_artists=artists[artists>3600] | |
#top_plays = plays[plays['artist'].isin(top_artists.index)] | |
#some odd duplicates needed tidying up | |
top_plays = plays[plays['artist'].isin(top_artists.index)].groupby(['user','artist']).agg({'plays':np.max}).reset_index() | |
top_plays_t=top_plays.pivot('user', 'artist', 'plays').fillna(0) | |
to_model=pd.merge(users, top_plays_t, left_on='user', right_index=True, how='left').fillna(0) | |
Y=to_model['m'].values | |
X=to_model[(to_model.columns.values[4:])].values | |
from sklearn.preprocessing import StandardScaler | |
SS=StandardScaler() | |
XS=SS.fit_transform(X) | |
from sklearn.decomposition import PCA | |
pca = PCA(n_components=20) | |
pca_fit=pca.fit_transform(XS) | |
print(pca.explained_variance_ratio_) | |
from sklearn.neighbors import KNeighborsClassifier | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.metrics import accuracy_score, precision_score, mean_squared_error, confusion_matrix | |
from sklearn.cross_validation import train_test_split | |
X_train, X_test, y_train, y_test = train_test_split(pca_fit, Y, test_size=0.33, random_state=0) | |
X_train2, X_cv, y_train2, y_cv = train_test_split(X_train, y_train, test_size=0.5, random_state=0) | |
knn_result=pd.DataFrame(columns=['Model', 'CP','Value','MSE','Accuracy', 'Precision']) | |
for k in range(1,21): | |
neigh = KNeighborsClassifier(n_neighbors=k) | |
neigh.fit(X_train2, y_train2) | |
predict=neigh.predict(X_cv) | |
mse=mean_squared_error(y_cv, predict) | |
conf=confusion_matrix(y_cv, predict) | |
accuracy=accuracy_score(y_cv, predict) | |
precision=precision_score(y_cv, predict) | |
knn_result.loc[k] = pd.Series({'Model': 'KNN','CP':'K', 'Value':k, 'MSE':mse, 'Accuracy':accuracy, 'Precision':precision}) | |
#print "%sNN - MSE: %s ACCURACY: %s PRECISION: %s" % (k, mse, accuracy, precision) | |
print knn_result | |
tree_result=pd.DataFrame(columns=['Model', 'CP','Value','MSE','Accuracy', 'Precision']) | |
for depth in range(1,21): | |
tree = DecisionTreeClassifier(max_depth=depth) | |
tree.fit(X_train2, y_train2) | |
predict=tree.predict(X_cv) | |
mse=mean_squared_error(y_cv, predict) | |
conf=confusion_matrix(y_cv, predict) | |
accuracy=accuracy_score(y_cv, predict) | |
precision=precision_score(y_cv, predict) | |
tree_result.loc[depth] = pd.Series({'Model': 'Tree','CP':'Max Depth', 'Value':depth, 'MSE':mse, 'Accuracy':accuracy, 'Precision':precision}) | |
#print "%sNN - MSE: %s ACCURACY: %s PRECISION: %s" % (k, mse, accuracy, precision) | |
forest_result=pd.DataFrame(columns=['Model', 'CP','Value','MSE','Accuracy', 'Precision']) | |
for d in range(1,21): | |
RFC = RandomForestClassifier(n_estimators=5, max_depth=d) | |
RFC.fit(X_train2, y_train2) | |
predict=RFC.predict(X_cv) | |
mse=mean_squared_error(y_cv, predict) | |
conf=confusion_matrix(y_cv, predict) | |
accuracy=accuracy_score(y_cv, predict) | |
precision=precision_score(y_cv, predict) | |
forest_result.loc[d] = pd.Series({'Model': 'Forest','CP':'Depth', 'Value':d, 'MSE':mse, 'Accuracy':accuracy, 'Precision':precision}) | |
#print "%sNN - MSE: %s ACCURACY: %s PRECISION: %s" % (k, mse, accuracy, precision) | |
final_output=pd.concat([knn_result,tree_result, forest_result]) | |
print final_output | |
#Visualize the results | |
#Grouped Line Plot | |
groups = final_output.groupby('Model') | |
# Plot | |
fig, (ax1,ax2,ax3) = plt.subplots(1,3, figsize=(15,5)) | |
#fig=plt.figure(figsize=(10,10)) | |
#ax1=fig.add_subplot(2,2,1) | |
#ax2=fig.add_subplot(2,2,2) | |
#ax3=fig.add_subplot(2,2,3) | |
for name, group in groups: | |
ax1.plot(group.Value, group.MSE, linestyle='-',linewidth=2, label=name) | |
ax2.plot(group.Value, group.Accuracy, linestyle='-',linewidth=2, label=name) | |
ax3.plot(group.Value, group.Precision, linestyle='-',linewidth=2, label=name) | |
ax1.set_title('MSE') | |
ax2.set_title('Accuracy') | |
ax3.set_title('Precision') | |
ax1.legend(loc='best') | |
plt.show() | |
#Individual Scatter Plots | |
final_output[final_output['Model']=='Tree'].plot(x='Value', y='MSE', color='Orange', marker='o', linestyle='dashed', label='Tree - Depth', figsize=(8,5)).legend().set_visible(False) | |
final_output[final_output['Model']=='Forest'].plot( x='Value', y='MSE', color='Orange', marker='o', linestyle='dashed', label='Forest - n items', figsize=(8,5)).legend().set_visible(False) | |
final_output[final_output['Model']=='KNN'].plot( x='Value', y='MSE', color='Orange', marker='o', linestyle='dashed', label='KNN - K', figsize=(8,5)).legend().set_visible(False) | |
#build final model | |
RFC = RandomForestClassifier(n_estimators=5, max_depth=10) | |
RFC.fit(X_train, y_train) | |
predict=RFC.predict(X_test) | |
mse=mean_squared_error(y_test, predict) | |
conf=confusion_matrix(y_test, predict) | |
accuracy=accuracy_score(y_test, predict) | |
precision=precision_score(y_test, predict) | |
print "Final RF Model - MSE: %s ACCURACY: %s PRECISION: %s" % (mse, accuracy, precision) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment