Last active
July 13, 2018 13:24
-
-
Save jangirrishabh/3cbe9d3eed4695cd8c0e460d58b7a914 to your computer and use it in GitHub Desktop.
Snippet for using demonstrations in ddpg.py agent, blog usage, not executable
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
self.lambda1 = 0.001 | |
self.lambda2 = 0.0078 | |
def _create_network(self, reuse=False): | |
mask = np.concatenate((np.zeros(self.batch_size - self.demo_batch_size), np.ones(self.demo_batch_size)), axis = 0) | |
target_Q_pi_tf = self.target.Q_pi_tf | |
clip_range = (-self.clip_return, 0. if self.clip_pos_returns else np.inf) | |
target_tf = tf.clip_by_value(batch_tf['r'] + self.gamma * target_Q_pi_tf, *clip_range) # y = r + gamma*Q(pi) | |
self.Q_loss_tf = tf.reduce_mean(tf.square(tf.stop_gradient(target_tf) - self.main.Q_tf)) #(y-Q(critic))^2 | |
if self.bc_loss ==1 and self.q_filter == 1 : | |
maskMain = tf.reshape(tf.boolean_mask(self.main.Q_tf > self.main.Q_pi_tf, mask), [-1]) #where is the demonstrator action better than actor action according to the critic? | |
self.cloning_loss_tf = tf.reduce_sum(tf.square(tf.boolean_mask(tf.boolean_mask((self.main.pi_tf), mask), maskMain, axis=0) - tf.boolean_mask(tf.boolean_mask((batch_tf['u']), mask), maskMain, axis=0))) | |
self.pi_loss_tf = -self.lambda1 * tf.reduce_mean(self.main.Q_pi_tf) | |
self.pi_loss_tf += self.lambda1 * self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u)) | |
self.pi_loss_tf += self.lambda2 * self.cloning_loss_tf | |
elif self.bc_loss == 1 and self.q_filter == 0: | |
self.cloning_loss_tf = tf.reduce_sum(tf.square(tf.boolean_mask((self.main.pi_tf), mask) - tf.boolean_mask((batch_tf['u']), mask))) | |
self.pi_loss_tf = -self.lambda1 * tf.reduce_mean(self.main.Q_pi_tf) | |
self.pi_loss_tf += self.lambda1 * self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u)) | |
self.pi_loss_tf += self.lambda2 * self.cloning_loss_tf | |
else: | |
self.pi_loss_tf = -tf.reduce_mean(self.main.Q_pi_tf) | |
self.pi_loss_tf += self.action_l2 * tf.reduce_mean(tf.square(self.main.pi_tf / self.max_u)) | |
self.cloning_loss_tf = tf.reduce_sum(tf.square(self.main.pi_tf - batch_tf['u'])) #random values |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment