Created
October 25, 2015 00:08
-
-
Save jangorecki/4aa6218b6011360338f2 to your computer and use it in GitHub Desktop.
OLAP operations in base R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## credits | |
# https://dzone.com/articles/olap-operation-r | |
# Setup the dimension tables | |
state_table <- data.frame(key=c("CA", "NY", "WA", "ON", "QU"), | |
name=c("California", "new York", "Washington", "Ontario", "Quebec"), | |
country=c("USA", "USA", "USA", "Canada", "Canada")) | |
month_table <- data.frame(key=1:12, | |
desc=c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"), | |
quarter=c("Q1","Q1","Q1","Q2","Q2","Q2","Q3","Q3","Q3","Q4","Q4","Q4")) | |
prod_table <- data.frame(key=c("Printer", "Tablet", "Laptop"), price=c(225, 570, 1120)) | |
# Function to generate the Sales table | |
gen_sales <- function(no_of_recs) { | |
# Generate transaction data randomly | |
loc <- sample(state_table$key, no_of_recs, replace=T, prob=c(2,2,1,1,1)) | |
time_month <- sample(month_table$key, no_of_recs, replace=T) | |
time_year <- sample(c(2012, 2013), no_of_recs, replace=T) | |
prod <- sample(prod_table$key, no_of_recs, replace=T, prob=c(1, 3, 2)) | |
unit <- sample(c(1,2), no_of_recs, replace=T, prob=c(10, 3)) | |
amount <- unit*prod_table[prod,]$price | |
sales <- data.frame(month=time_month, year=time_year, loc=loc, prod=prod, unit=unit, amount=amount) | |
# Sort the records by time order | |
sales <- sales[order(sales$year, sales$month),] | |
row.names(sales) <- NULL | |
return(sales) | |
} # Now create the sales fact table | |
sales_fact <- gen_sales(500) # Look at a few records | |
head(sales_fact) | |
# Build up a cube | |
revenue_cube <- tapply(sales_fact$amount, sales_fact[,c("prod", "month", "year", "loc")], FUN=function(x){return(sum(x))}) | |
# Showing the cells of the cube | |
revenue_cube | |
dimnames(revenue_cube) | |
# Slice | |
# cube data in Jan, 2012 | |
revenue_cube[, "1", "2012",] | |
# cube data in Jan, 2012 | |
revenue_cube["Tablet", "1", "2012",] | |
# Dice | |
revenue_cube[c("Tablet","Laptop"), c("1","2","3"), , c("CA","NY")] | |
# Rollup | |
apply(revenue_cube, c("year", "prod"), FUN=function(x) {return(sum(x, na.rm=TRUE))}) | |
# Drilldown | |
apply(revenue_cube, c("year", "month", "prod"), FUN=function(x) {return(sum(x, na.rm=TRUE))}) | |
# Pivot | |
apply(revenue_cube, c("year", "month"), FUN=function(x) {return(sum(x, na.rm=TRUE))}) | |
apply(revenue_cube, c("prod", "loc"), FUN=function(x) {return(sum(x, na.rm=TRUE))}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment