Created
April 21, 2017 16:00
-
-
Save jasonmhite/6a8f114b188b5f52aa83bf065e28a911 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gefry3 # My model code | |
import pymc | |
import numpy as np | |
import seaborn as sb | |
from scipy.stats import multivariate_normal | |
# P is an object that encompasses the geometry and problem, can be | |
# called to compute detector response | |
P = gefry3.read_input('g3_deck_varxs.yml') | |
# The actual location and intensity (used for starting the chains) | |
S0 = np.array([158., 98.]) | |
I0 = 3.214e9 | |
BG = 300 | |
NS = int(1e4) # Number of samples | |
XMIN, YMIN, XMAX, YMAX = P.domain.all.bounds | |
IMIN, IMAX = 1e9, 5e9 | |
# Relative perturbation used for all cross sections | |
XS_DELTA = 0.25 | |
DWELL = np.array([i.dwell for i in P.detectors]) | |
# Call P at the nominal values to get the real response | |
nominal = P( | |
S0, | |
I0, | |
P.interstitial_material, | |
P.materials, | |
) | |
nominal += BG * DWELL | |
# Generate the data | |
data = np.random.poisson(nominal) | |
C = np.diag(data) | |
# Model factory builds the dict of variables to pass to PyMC | |
def model_factory(): | |
x = pymc.Uniform("x", value=S0[0], lower=XMIN, upper=XMAX) | |
y = pymc.Uniform("y", value=S0[1], lower=YMIN, upper=YMAX) | |
I = pymc.Uniform("I", value=I0, lower=IMIN, upper=IMAX) | |
# interstitial_xs = pymc.Normal( | |
# "Sigma_inter", | |
# P.interstitial_material.Sigma_T, | |
# (P.interstitial_material.Sigma_T * XS_DELTA) ** 2, | |
# value=P.interstitial_material.Sigma_T, | |
# observed=True, | |
# ) | |
s_i_xs = P.interstitial_material.Sigma_T | |
interstitial_xs = pymc.Uniform( | |
"Sigma_inter", | |
s_i_xs * (1 - XS_DELTA), | |
s_i_xs * (1 + XS_DELTA), | |
value=s_i_xs, | |
observed=True, | |
) | |
mu_xs = np.array([M.Sigma_T for M in P.materials]) | |
# var_xs = np.diag([(M * XS_DELTA) ** 2. for M in mu_xs]) | |
# building_xs = pymc.MvNormalCov( | |
# "Sigma", | |
# mu_xs, | |
# var_xs, | |
# value=mu_xs, | |
# observed=True, | |
# ) | |
building_xs = pymc.Uniform( | |
"Sigma", | |
mu_xs * (1 - XS_DELTA), | |
mu_xs * (1 + XS_DELTA), | |
value=mu_xs, | |
observed=True, | |
) | |
@pymc.deterministic(plot=False) | |
def model_pred(x=x, y=y, I=I, interstitial_xs=interstitial_xs, building_xs=building_xs): | |
inter_mat = gefry3.Material(1.0, interstitial_xs) | |
building_mats = [gefry3.Material(1.0, s) for s in building_xs] | |
return P( | |
[x, y], | |
I, | |
inter_mat, | |
building_mats, | |
) | |
background = pymc.Poisson( | |
"b", | |
DWELL * BG, | |
value=DWELL * BG, | |
observed=True, | |
plot=False, | |
) | |
@pymc.stochastic(plot=False, observed=True) | |
def observed_response(value=nominal, model_pred=model_pred, background=background): | |
resp = model_pred + background | |
return multivariate_normal.logpdf(resp, mean=data, cov=C) | |
return { | |
"x": x, | |
"y": y, | |
"I": I, | |
"interstitial_xs": interstitial_xs, | |
"building_xs": building_xs, | |
"model_pred": model_pred, | |
"background": background, | |
"observed_response": observed_response, | |
} | |
mvars = model_factory() | |
M = pymc.MCMC(mvars) | |
# This sets AdaptiveMetropolis for all variables | |
# Note that observed variables won't actually use the sampler, but | |
# it's fine to set it on everything. It just ignores ones that aren't | |
# being sampled. | |
M.use_step_method( | |
pymc.AdaptiveMetropolis, | |
[mvars[i] for i in mvars] | |
) | |
M.sample(NS) | |
res = np.vstack([M.trace(z)[:] for z in ["x", "y", "I"]]) | |
np.savetxt("out_25pct.dat", res.T) | |
print("\n\n==== Results ====\n") | |
print("x: {}".format(np.mean(M.trace("x")[:]))) | |
print("y: {}".format(np.mean(M.trace("y")[:]))) | |
print("I: {}".format(np.mean(M.trace("I")[:]))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment