Created
December 21, 2021 17:37
-
-
Save jayhuang75/eb6e0cbf32b961a703ec5cc121dbb667 to your computer and use it in GitHub Desktop.
go-train-delay-ml-pipeline-main-flow
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| // convert to feature and target dataset | |
| let (features, target) = pg_source_app.pipeline.feature_and_target(&df).await; | |
| //convert feature to smartcore data matrix | |
| let x_matrix = pg_source_app | |
| .pipeline | |
| .feature_to_matrix(&features.unwrap()) | |
| .await; | |
| // convert target to class data vec<f64> | |
| let y = pg_source_app | |
| .pipeline | |
| .target_to_ndarray(&target.unwrap()) | |
| .await?; | |
| // // cross validate the model | |
| // let result = pg_source_app.pipeline.k_fold_cross_validate(&x_matrix.unwrap(), &y).await?; | |
| // info!("{}", format!("cross validate result: {:?}", result)); | |
| // train the model and save the model | |
| let model_path = pg_source_app | |
| .pipeline | |
| .linear_regression_model_build(&x_matrix.unwrap(), &y) | |
| .await?; | |
| info!("{}", format!("build success linear regression model saved path: {:?}", model_path)); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment