Skip to content

Instantly share code, notes, and snippets.

@jayhutfles
Last active April 13, 2016 18:22
Show Gist options
  • Save jayhutfles/6b2da3ae9df741971b60 to your computer and use it in GitHub Desktop.
Save jayhutfles/6b2da3ae9df741971b60 to your computer and use it in GitHub Desktop.
GHS MinSpanningTree algorithm. Not as clean as Prim's or Kruskal's. But it scales, dood.
// Let a "fragment" be a connected subgraph of a minimum spanning tree.
// To calculate a graph's entire minimum spanning tree:
// "while there are mutually nearest fragments, merge them"
// "merge": given fragments F and G:
// combine F and G's vertices
// combine F and G's mst edges, plus their shared external edge
// combine external edges, but filter out those which only connect F and G
// take max of levels if different, or add one if same
// "nearest fragment": given a fragment F
// then the fragment containing the other end of F's shortest external edge is the nearest fragment
// "mutually nearest": given a fragment F and it's nearest fragment NF:
// when NF's nearest fragment is F
// then F and NF are a set of mutually nearest fragments
// a "fragment" is required to have:
// vertices it covers
// mst edges joining the vertices
// external edges
// a level
import scala.annotation.tailrec
object MinSpanningTree {
type Vertex = Long
case class Edge(id: Long, vertices: Set[Vertex], length: Double) extends Ordered[Edge] {
def compare(that: Edge): Int = if (this.length == that.length) this.id.compare(that.id) else this.length.compare(that.length)
}
case class Fragment(vertices: Set[Vertex], mstEdges: Set[Edge], externalEdges: Set[Edge], level: Int) {
def shortestExternalEdge: Edge = externalEdges.min
def nearestVertex: Vertex = {
val nearestVertices = shortestExternalEdge.vertices.diff(vertices)
assert(nearestVertices.size == 1)
nearestVertices.head
}
}
object Fragment {
def merge(f: Fragment, g: Fragment): Fragment = {
val newVertices = f.vertices ++ g.vertices
val newMSTEdges = sharedExternalEdge(f, g) match {
case Some(edge) => f.mstEdges ++ g.mstEdges + edge
case None => f.mstEdges ++ g.mstEdges
}
val newExtEdges = (f.externalEdges ++ g.externalEdges).filter(e => newVertices.intersect(e.vertices).size == 1)
val newLevel = if (f.level == g.level) (f.level + 1) else Math.max(f.level, g.level)
new Fragment(newVertices, newMSTEdges, newExtEdges, newLevel)
}
def sharedExternalEdge(f: Fragment, g: Fragment): Option[Edge] = {
if (f.shortestExternalEdge == g.shortestExternalEdge) Some(f.shortestExternalEdge) else None
}
}
object MSTFragments {
def fragmentsBasedOn(edges: Set[Edge]): Set[Fragment] = {
val allVertices: Set[Vertex] = edges.flatMap(e => e.vertices)
for {
v <- allVertices
} yield {
val edgesAdjacentToV = edges.filter(e => e.vertices.contains(v))
Fragment(Set(v), Set[Edge](), edgesAdjacentToV, 0)
}
}
def createFragmentLookupMapFrom(fragments: Set[Fragment]): Map[Vertex, Fragment] = {
(for {
f <- fragments
v <- f.vertices
} yield {
(v, f)
}).toMap
}
def mutuallyNearestFragmentsIn(fragments: Set[Fragment]) = {
val lookupFragmentForVertex = createFragmentLookupMapFrom(fragments)
val fragmentsAndNeighbors = for {
f <- fragments
} yield {
Set(f, lookupFragmentForVertex(f.nearestVertex))
}
fragmentsAndNeighbors.filter(fragmentAndNeighbor => {
val fragment = fragmentAndNeighbor.head
val neighbor = fragmentAndNeighbor.last
fragment.vertices.contains(neighbor.nearestVertex)
})
}
@tailrec
def mergeMutuallyNearest(fragments: Set[Fragment]): Set[Fragment] = {
lazy val mutuallyNearestFragments = mutuallyNearestFragmentsIn(fragments)
if (fragments.size < 2 || mutuallyNearestFragments.size == 0) {
fragments
} else {
val unmergedFragments = fragments.diff(mutuallyNearestFragments.flatten)
val mergedFragments = mutuallyNearestFragments.map(toMerge => Fragment.merge(toMerge.head, toMerge.last))
mergeMutuallyNearest(mergedFragments ++ unmergedFragments)
}
}
def apply(initialEdges: Set[Edge]): Set[Fragment] = {
mergeMutuallyNearest(fragmentsBasedOn(initialEdges))
}
}
def apply(edges: Set[Edge]): Set[Edge] = {
for {
fragment <- MSTFragments(edges)
mstEdge <- fragment.mstEdges
} yield {
mstEdge
}
}
}
import org.scalatest.FunSuite
import MinSpanningTree._
class MinSpanningTreeTests extends FunSuite {
test("ALGEBRAIC: merging fragments with inequal levels results in correct level") {
// GIVEN two Fragments with inequal levels
val e12 = Edge(12, Set(1, 2), 1.0)
val e13 = Edge(13, Set(1, 3), 2.0)
val e23 = Edge(23, Set(2, 3), 3.0)
val f1 = Fragment(Set(1), Set[Edge](), Set(e12, e13), 0)
val f2 = Fragment(Set(2, 3), Set(e23), Set(e12, e13), 1)
// WHEN merging them
val f3 = Fragment.merge(f1, f2)
// THEN the level is the max of the two levels
assert(f3.level === Math.max(f1.level, f2.level))
}
test("ALGEBRAIC: merging fragments with equal levels results in correct level") {
// GIVEN two Fragments with equal levels
val e12 = Edge(12, Set(1, 2), 1.0)
val e13 = Edge(13, Set(1, 3), 2.0)
val e23 = Edge(23, Set(2, 3), 3.0)
val f1 = Fragment(Set(1), Set[Edge](), Set(e12, e13), 0)
val f2 = Fragment(Set(2), Set[Edge](), Set(e12, e23), 0)
// WHEN merging them
val f3 = Fragment.merge(f1, f2)
// THEN the level is the max of the two levels
assert(f3.level === f1.level + 1)
assert(f3.level === f2.level + 1)
}
test("ALGEBRAIC: merging fragments filters out external edges which would otherwise cause a cycle") {
// GIVEN two Fragments whose merge would result in cyclic edges
val e12 = Edge(12, Set(1, 2), 1.0)
val e13 = Edge(13, Set(1, 3), 2.0)
val e14 = Edge(14, Set(1, 4), 4.0)
val e23 = Edge(23, Set(2, 3), 3.0)
val f1 = Fragment(Set(1), Set[Edge](), Set(e12, e13, e14), 0)
val f2 = Fragment(Set(2, 3), Set(e23), Set(e12, e13), 1)
// WHEN merging them
val f3 = Fragment.merge(f1, f2)
// THEN the edge e13 is not an external edge, but e14 is
assert(!f3.externalEdges.contains(e13))
assert(f3.externalEdges.contains(e14))
}
test("ALGEBRAIC: merging fragments results in one more MSTEdge than before") {
// GIVEN two fragments with at least one shared edge
val e12 = Edge(12, Set(1, 2), 1.0)
val e14 = Edge(14, Set(1, 4), 4.0)
val e23 = Edge(23, Set(2, 3), 3.0)
val f1 = Fragment(Set(1), Set[Edge](), Set(e12, e14), 0)
val f2 = Fragment(Set(2, 3), Set(e23), Set(e12), 1)
// WHEN merging them
val f3 = Fragment.merge(f1, f2)
// THEN the shared external edge is part of the MSTEdges
assert(f3.mstEdges.contains(e12))
}
test("INDUCTIVE HYPOTHESIS: mutually nearest neighbors are appropriately identified") {
// GIVEN a fragment with two external edges
val e12 = Edge(12, Set(1, 2), 1.0)
val e13 = Edge(13, Set(1, 3), 2.0)
val f1 = Fragment(Set(1), Set[Edge](), Set(e12, e13), 0)
val f2 = Fragment(Set(2), Set[Edge](), Set(e12), 0)
val f3 = Fragment(Set(3), Set[Edge](), Set(e13), 0)
val fragments = Set(f1, f2, f3)
// WHEN finding its mutually nearest neighbor
val mutuallyNearestNeighbors = MSTFragments.mutuallyNearestFragmentsIn(fragments)
// THEN it identifies the correct ones
assert(mutuallyNearestNeighbors.contains(Set(f1, f2)))
assert(mutuallyNearestNeighbors.size == 1)
}
}
@jayhutfles
Copy link
Author

Sample edges: val edges = Set(Edge(Set(1, 2), 1.0), Edge(Set(2, 3), 2.0), Edge(Set(1, 3), 10.0))

@jayhutfles
Copy link
Author

import java.io._
import scala.io.Source
val edgeLines = Source.fromFile("/path/to/file").getLines.toList.map(_.split(",") match {
case Array(id, src, dst, _, length) => Edge(id.toLong, Set(src.toLong, dst.toLong), length.toDouble)
})

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment