Last active
December 21, 2015 11:18
-
-
Save jayrambhia/6297709 to your computer and use it in GitHub Desktop.
superpixels using SLIC
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import sys | |
import numpy as np | |
import time | |
class SLIC: | |
def __init__(self, img, step, nc): | |
self.img = img | |
self.height, self.width = img.shape[:2] | |
self.labimg = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) | |
self.step = step | |
self.nc = nc | |
self.ns = step | |
self.FLT_MAX = 1000000 | |
self.ITERATIONS = 10 | |
#self._initData() | |
def generateSuperPixels(self): | |
self._initData() | |
print self.centers.shape, "number of centers" | |
print self.clusters.shape, "number of clusters" | |
print self.center_counts.shape, "number of center_counts" | |
print self.centers | |
#raw_input("centers:") | |
indnp = np.mgrid[0:self.height,0:self.width].swapaxes(0,2).swapaxes(0,1) | |
for i in range(self.ITERATIONS): | |
self.distances = self.FLT_MAX * np.ones(self.img.shape[:2]) | |
for j in xrange(self.centers.shape[0]): | |
""" | |
for k in xrange(self.centers[j][3]-self.step, self.centers[j][3]+self.step): | |
for l in xrange(self.centers[j][4]-self.step, self.centers[j][4]+self.step): | |
print j, k, l | |
if k >=0 and k < self.width and l >=0 and l < self.height: | |
color = self.labimg[l, k] | |
d = self._computeDist(j, (k, l), color) | |
print d | |
if d < self.distances[k][l]: | |
self.distances[k][l] = d | |
self.clusters[k][l] = j | |
""" | |
xlow, xhigh = int(self.centers[j][3] - self.step), int(self.centers[j][3] + self.step) | |
ylow, yhigh = int(self.centers[j][4] - self.step), int(self.centers[j][4] + self.step) | |
if xlow <= 0: | |
xlow = 0 | |
if xhigh > self.width: | |
xhigh = self.width | |
if ylow <=0: | |
ylow = 0 | |
if yhigh > self.height: | |
yhigh = self.height | |
cropimg = self.labimg[ylow : yhigh , xlow : xhigh].astype(np.int64) | |
colordiff = cropimg - self.labimg[self.centers[j][4], self.centers[j][3]] | |
colorDist = np.sqrt(np.sum(np.square(colordiff.astype(np.int64)), axis=2)) | |
yy, xx = np.ogrid[ylow : yhigh, xlow : xhigh] | |
pixdist = ((yy-self.centers[j][4])**2 + (xx-self.centers[j][3])**2)**0.5 | |
dist = ((colorDist/self.nc)**2 + (pixdist/self.ns)**2)**0.5 | |
distanceCrop = self.distances[ylow : yhigh, xlow : xhigh] | |
idx = dist < distanceCrop | |
distanceCrop[idx] = dist[idx] | |
self.distances[ylow : yhigh, xlow : xhigh] = distanceCrop | |
self.clusters[ylow : yhigh, xlow : xhigh][idx] = j | |
# clear the center values | |
# save some more time by not clearing it | |
#print "clear the center values" | |
#self.centers = np.zeros((self.centers.shape[0], 5)) | |
#self.center_counts = np.zeros(self.centers.shape[0]) | |
# compute new cluster values | |
print "compute new cluster values" | |
t = time.time() | |
for k in xrange(len(self.centers)): | |
idx = (self.clusters == k) | |
colornp = self.labimg[idx] | |
distnp = indnp[idx] | |
self.centers[k][0:3] = np.sum(colornp, axis=0) | |
sumy, sumx = np.sum(distnp, axis=0) | |
self.centers[k][3:] = sumx, sumy | |
#self.centers[k][0:3] = np.average(colornp, axis=0) | |
#self.centers[k][3:] = np.average(distnp, axis=0) | |
# Normalize here | |
self.centers[k] /= np.sum(idx) | |
#self.center_counts[k] = np.sum(idx) | |
#print self.centers | |
t11 = time.time() | |
print t11 - t, "time taken for clusters" | |
""" | |
for j in xrange(self.width): | |
for k in xrange(self.height): | |
c_id = self.clusters[k, j] | |
#print c_id, "c_id" | |
if c_id != -1: | |
color = self.labimg[k, j] | |
self.centers[c_id][0:3] += color | |
self.centers[c_id][3:] += (j, k) | |
self.center_counts[c_id] +=1 | |
""" | |
# Normalize the cluster | |
""" | |
print "Normalize the cluster" | |
for j in xrange(self.centers.shape[0]): | |
self.centers[j] /= self.center_counts[j] | |
""" | |
print self.centers | |
def _initData(self): | |
print "_initData" | |
print self.step, "step" | |
self.clusters = -1 * np.ones(self.img.shape[:2]) | |
self.distances = self.FLT_MAX * np.ones(self.img.shape[:2]) | |
centers = [] | |
for i in xrange(self.step, self.width - self.step/2, self.step): | |
for j in xrange(self.step, self.height - self.step/2, self.step): | |
#print i, j, "_findLocalMinimum" | |
nc = self._findLocalMinimum(center=(i, j)) | |
color = self.labimg[nc[1], nc[0]] | |
center = [color[0], color[1], color[2], nc[0], nc[1]] | |
centers.append(center) | |
self.center_counts = np.zeros(len(centers)) | |
self.centers = np.array(centers) | |
print self.centers.shape, "number of centers" | |
print "_intiData finished" | |
def createConnectivity(self): | |
print "createConnectivity" | |
label = 0 | |
adjlabel = 0 | |
lims = self.width * self.height / self.centers.shape[0] | |
dx4 = [-1, 0, 1, 0] | |
dy4 = [0, -1, 0, 1] | |
new_clusters = -1 * np.ones(self.img.shape[:2]).astype(np.int64) | |
print lims, "lims" | |
#idx = new_clusters == -1 | |
elements = [] | |
for i in xrange(self.width): | |
for j in xrange(self.height): | |
#print new_clusters[j, i] | |
#print j, i | |
if new_clusters[j, i] == -1: | |
elements = [] | |
elements.append((j, i)) | |
for dx, dy in zip(dx4, dy4): | |
x = elements[0][1] + dx | |
y = elements[0][0] + dy | |
if (x>=0 and x < self.width and | |
y>=0 and y < self.height and | |
new_clusters[y, x] >=0): | |
adjlabel = new_clusters[y, x] | |
#print elements | |
count = 1 | |
""" | |
for dx, dy in zip(dx4, dy4): | |
x = elements[0][1] + dx | |
y = elements[0][0] + dy | |
if (x>=0 and x<self.width and y>=0 and y<self.height): | |
if new_clusters[y, x] == -1 and self.clusters[j, i] == self.clusters[y, x]: | |
elements.append((y, x)) | |
new_clusters[y, x] = label | |
count+=1 | |
""" | |
#for c in range(count): | |
c = 0 | |
while c < count: | |
for dx, dy in zip(dx4, dy4): | |
x = elements[c][1] + dx | |
y = elements[c][0] + dy | |
if (x>=0 and x<self.width and y>=0 and y<self.height): | |
if new_clusters[y, x] == -1 and self.clusters[j, i] == self.clusters[y, x]: | |
elements.append((y, x)) | |
new_clusters[y, x] = label | |
count+=1 | |
c+=1 | |
#print count | |
if (count <= lims >> 2): | |
for c in range(count): | |
new_clusters[elements[c]] = adjlabel | |
label-=1 | |
label+=1 | |
print label | |
self.new_clusters = new_clusters | |
def displayContours(self, color): | |
print "displayContours" | |
dx8 = [-1, -1, 0, 1, 1, 1, 0, -1] | |
dy8 = [0, -1, -1, -1, 0, 1, 1, 1] | |
isTaken = np.zeros(self.img.shape[:2], np.bool) | |
contours = [] | |
for i in xrange(self.width): | |
for j in xrange(self.height): | |
nr_p = 0 | |
for dx, dy in zip(dx8, dy8): | |
x = i + dx | |
y = j + dy | |
if x>=0 and x < self.width and y>=0 and y < self.height: | |
if isTaken[y, x] == False and self.clusters[j, i] != self.clusters[y, x]: | |
#print self.clusters[j, i] | |
#print self.clusters[y, x] | |
nr_p += 1 | |
#print nr_p, "nr_p", j, i | |
if nr_p >= 2: | |
isTaken[j, i] = True | |
contours.append([j, i]) | |
#print contours | |
#print len(contours) | |
for i in xrange(len(contours)): | |
self.img[contours[i][0], contours[i][1]] = color | |
def _findLocalMinimum(self, center): | |
min_grad = self.FLT_MAX | |
loc_min = center | |
#print "_findLocalMinimum" | |
#print center | |
for i in xrange(center[0] - 1, center[0] + 2): | |
for j in xrange(center[1] - 1, center[1] + 2): | |
#print i, j | |
c1 = self.labimg[j+1, i] | |
c2 = self.labimg[j, i+1] | |
c3 = self.labimg[j, i] | |
#print ((c1[0] - c3[0])**2)**0.5 | |
#print ((c2[0] - c3[0])**2)**0.5 | |
if ((c1[0] - c3[0])**2)**0.5 + ((c2[0] - c3[0])**2)**0.5 < min_grad: | |
min_grad = abs(c1[0] - c3[0]) + abs(c2[0] - c3[0]) | |
loc_min = [i, j] | |
#print loc_min, "loc_min" | |
return loc_min | |
def _computeDist(self, ci, pixel, color): | |
dc = (sum((self.centers[ci][:3] - color)**2))**0.5 | |
ds = (sum((self.centers[ci][3:] - pixel)**2))**0.5 | |
return ((dc/self.nc)**2 + (ds/self.ns)**2)**0.5 | |
img = cv2.imread(sys.argv[1]) | |
nr_superpixels = int(sys.argv[2]) | |
nc = int(sys.argv[3]) | |
#img = cv2.resize(img, (300, 200)) | |
step = int((img.shape[0]*img.shape[1]/nr_superpixels)**0.5) | |
print step, "step" | |
slic = SLIC(img, step, nc) | |
slic.generateSuperPixels() | |
slic.createConnectivity() | |
cv2.imshow("cluster", slic.clusters.astype(np.uint8)) | |
print slic.clusters | |
cv2.imshow("img", slic.img) | |
slic.displayContours((255, 0, 0)) | |
cv2.imshow("fin", slic.img) | |
cv2.waitKey(0) | |
cv2.imwrite("SLICimg.jpg", slic.img) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment