Created
October 16, 2023 03:56
-
-
Save jazlopez/86af852fd78b2c7e8ebfe82b1606bca4 to your computer and use it in GitHub Desktop.
Python/ML Exercise Computes Cost Function Linear Regresion
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
def compute_cost(x, y, w, b): | |
""" | |
Computes the cost function for linear regression. | |
Args: | |
x (ndarray): Shape (m,) Input to the model (Population of cities) | |
y (ndarray): Shape (m,) Label (Actual profits for the cities) | |
w, b (scalar): Parameters of the model | |
Returns | |
total_cost (float): The cost of using w,b as the parameters for linear regression | |
to fit the data points in x and y | |
""" | |
# number of training examples | |
m = x.shape[0] | |
### START CODE HERE ### | |
cost_sum = 0 | |
for i in range(m): | |
f_wb = w * x[i] + b | |
cost = (f_wb - y[i]) ** 2 | |
cost_sum = cost_sum + cost | |
### END CODE HERE ### | |
total_cost = (1 / (2 * m)) * cost_sum | |
return total_cost | |
x_data = np.array([ 6.1101, 5.5277, 8.5186, 7.0032, 5.8598, 8.3829, 7.4764, | |
8.5781, 6.4862, 5.0546, 5.7107, 14.164 , 5.734 , 8.4084, | |
5.6407, 5.3794, 6.3654, 5.1301, 6.4296, 7.0708, 6.1891, | |
20.27 , 5.4901, 6.3261, 5.5649, 18.945 , 12.828 , 10.957 , | |
13.176 , 22.203 , 5.2524, 6.5894, 9.2482, 5.8918, 8.2111, | |
7.9334, 8.0959, 5.6063, 12.836 , 6.3534, 5.4069, 6.8825, | |
11.708 , 5.7737, 7.8247, 7.0931, 5.0702, 5.8014, 11.7 , | |
5.5416, 7.5402, 5.3077, 7.4239, 7.6031, 6.3328, 6.3589, | |
6.2742, 5.6397, 9.3102, 9.4536, 8.8254, 5.1793, 21.279 , | |
14.908 , 18.959 , 7.2182, 8.2951, 10.236 , 5.4994, 20.341 , | |
10.136 , 7.3345, 6.0062, 7.2259, 5.0269, 6.5479, 7.5386, | |
5.0365, 10.274 , 5.1077, 5.7292, 5.1884, 6.3557, 9.7687, | |
6.5159, 8.5172, 9.1802, 6.002 , 5.5204, 5.0594, 5.7077, | |
7.6366, 5.8707, 5.3054, 8.2934, 13.394 , 5.4369]) | |
y_data = np.array([17.592 , 9.1302 , 13.662 , 11.854 , 6.8233 , 11.886 , | |
4.3483 , 12. , 6.5987 , 3.8166 , 3.2522 , 15.505 , | |
3.1551 , 7.2258 , 0.71618, 3.5129 , 5.3048 , 0.56077, | |
3.6518 , 5.3893 , 3.1386 , 21.767 , 4.263 , 5.1875 , | |
3.0825 , 22.638 , 13.501 , 7.0467 , 14.692 , 24.147 , | |
-1.22 , 5.9966 , 12.134 , 1.8495 , 6.5426 , 4.5623 , | |
4.1164 , 3.3928 , 10.117 , 5.4974 , 0.55657, 3.9115 , | |
5.3854 , 2.4406 , 6.7318 , 1.0463 , 5.1337 , 1.844 , | |
8.0043 , 1.0179 , 6.7504 , 1.8396 , 4.2885 , 4.9981 , | |
1.4233 , -1.4211 , 2.4756 , 4.6042 , 3.9624 , 5.4141 , | |
5.1694 , -0.74279, 17.929 , 12.054 , 17.054 , 4.8852 , | |
5.7442 , 7.7754 , 1.0173 , 20.992 , 6.6799 , 4.0259 , | |
1.2784 , 3.3411 , -2.6807 , 0.29678, 3.8845 , 5.7014 , | |
6.7526 , 2.0576 , 0.47953, 0.20421, 0.67861, 7.5435 , | |
5.3436 , 4.2415 , 6.7981 , 0.92695, 0.152 , 2.8214 , | |
1.8451 , 4.2959 , 7.2029 , 1.9869 , 0.14454, 9.0551 , | |
0.61705]) | |
EXPECTED_COST = 75.203 | |
cost = round(compute_cost(x_data, y_data, 2, 1),3) | |
assert cost == EXPECTED_COST | |
print(type(cost)) | |
print(f'Cost at initial w: {cost:.3f}') | |
# ----- | |
plt.scatter(x_data, y_data, marker='x', c='r') | |
plt.title("Profits vs. Population per city") | |
plt.ylabel('Profit in $10,000') | |
plt.xlabel('Population of City in 10,000s') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment