Created
April 13, 2017 05:51
-
-
Save jbclements/19fa7b25d70b931b087d19e3272a8609 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| ((λ (dividesP) | |
| ((λ (prime_loop) | |
| ((λ (isPrimeP) | |
| ((λ (loop) ((loop loop) 10000)) | |
| (λ (loop) | |
| (λ (n) | |
| (ifleq0 | |
| (+ n (* -1 2)) | |
| (ifleq0 | |
| (+ 2 (* -1 n)) | |
| 2 | |
| (ifleq0 | |
| (+ ((isPrimeP isPrimeP) n) (* -1 1)) | |
| (ifleq0 | |
| (+ 1 (* -1 ((isPrimeP isPrimeP) n))) | |
| ((λ (x) ((loop loop) (+ n -1))) | |
| (println n)) | |
| ((loop loop) (+ n -1))) | |
| ((loop loop) (+ n -1)))) | |
| (ifleq0 | |
| (+ ((isPrimeP isPrimeP) n) (* -1 1)) | |
| (ifleq0 | |
| (+ 1 (* -1 ((isPrimeP isPrimeP) n))) | |
| ((λ (x) ((loop loop) (+ n -1))) | |
| (println n)) | |
| ((loop loop) (+ n -1))) | |
| ((loop loop) (+ n -1)))))))) | |
| (λ (isPrimeP) | |
| (λ (n) (((prime_loop prime_loop) n) (+ n -1)))))) | |
| (λ (prime_loop) | |
| (λ (n) | |
| (λ (divisor) | |
| (ifleq0 | |
| (+ n (* -1 1)) | |
| (ifleq0 | |
| (+ 1 (* -1 n)) | |
| 1 | |
| (ifleq0 | |
| (+ divisor (* -1 1)) | |
| (ifleq0 | |
| (+ 1 (* -1 divisor)) | |
| 1 | |
| (ifleq0 | |
| (+ | |
| (((dividesP dividesP) divisor) n) | |
| (* -1 1)) | |
| (ifleq0 | |
| (+ | |
| 1 | |
| (* -1 (((dividesP dividesP) divisor) n))) | |
| 0 | |
| (((prime_loop prime_loop) n) | |
| (+ divisor -1))) | |
| (((prime_loop prime_loop) n) | |
| (+ divisor -1)))) | |
| (ifleq0 | |
| (+ (((dividesP dividesP) divisor) n) (* -1 1)) | |
| (ifleq0 | |
| (+ | |
| 1 | |
| (* -1 (((dividesP dividesP) divisor) n))) | |
| 0 | |
| (((prime_loop prime_loop) n) (+ divisor -1))) | |
| (((prime_loop prime_loop) n) | |
| (+ divisor -1))))) | |
| (ifleq0 | |
| (+ divisor (* -1 1)) | |
| (ifleq0 | |
| (+ 1 (* -1 divisor)) | |
| 1 | |
| (ifleq0 | |
| (+ (((dividesP dividesP) divisor) n) (* -1 1)) | |
| (ifleq0 | |
| (+ | |
| 1 | |
| (* -1 (((dividesP dividesP) divisor) n))) | |
| 0 | |
| (((prime_loop prime_loop) n) (+ divisor -1))) | |
| (((prime_loop prime_loop) n) (+ divisor -1)))) | |
| (ifleq0 | |
| (+ (((dividesP dividesP) divisor) n) (* -1 1)) | |
| (ifleq0 | |
| (+ 1 (* -1 (((dividesP dividesP) divisor) n))) | |
| 0 | |
| (((prime_loop prime_loop) n) (+ divisor -1))) | |
| (((prime_loop prime_loop) n) | |
| (+ divisor -1)))))))))) | |
| (λ (dividesP) | |
| (λ (divisor) | |
| (λ (n) | |
| ((λ (loop) ((loop loop) 1)) | |
| (λ (loop) | |
| (λ (m) | |
| (ifleq0 | |
| (+ (* divisor m) (* -1 n)) | |
| (ifleq0 | |
| (+ n (* -1 (* divisor m))) | |
| 1 | |
| (ifleq0 | |
| (+ (+ n (* -1 (* divisor m))) (* -1 1)) | |
| 0 | |
| ((loop loop) (+ m 1)))) | |
| (ifleq0 | |
| (+ (+ n (* -1 (* divisor m))) (* -1 1)) | |
| 0 | |
| ((loop loop) (+ m 1))))))))))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment