-
-
Save jbonyun/15bdd0d9cd68ea2f70e7f834eb06650d to your computer and use it in GitHub Desktop.
Simple color balance algorithm using Python 2.7.8 and OpenCV 2.4.10. Ported from: http://www.morethantechnical.com/2015/01/14/simplest-color-balance-with-opencv-wcode/
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import math | |
import numpy as np | |
import sys | |
def apply_mask(matrix, mask, fill_value): | |
masked = np.ma.array(matrix, mask=mask, fill_value=fill_value) | |
return masked.filled() | |
def apply_threshold(matrix, low_value, high_value): | |
low_mask = matrix < low_value | |
matrix = apply_mask(matrix, low_mask, low_value) | |
high_mask = matrix > high_value | |
matrix = apply_mask(matrix, high_mask, high_value) | |
return matrix | |
def simplest_cb(img, percent): | |
assert img.shape[2] == 3 | |
assert percent > 0 and percent < 100 | |
half_percent = percent / 200.0 | |
channels = cv2.split(img) | |
out_channels = [] | |
for channel in channels: | |
assert len(channel.shape) == 2 | |
# find the low and high precentile values (based on the input percentile) | |
height, width = channel.shape | |
vec_size = width * height | |
flat = channel.reshape(vec_size) | |
assert len(flat.shape) == 1 | |
flat = np.sort(flat) | |
n_cols = flat.shape[0] | |
low_val = flat[math.floor(n_cols * half_percent)] | |
high_val = flat[math.ceil( n_cols * (1.0 - half_percent))] | |
print "Lowval: ", low_val | |
print "Highval: ", high_val | |
# saturate below the low percentile and above the high percentile | |
thresholded = apply_threshold(channel, low_val, high_val) | |
# scale the channel | |
normalized = cv2.normalize(thresholded, thresholded.copy(), 0, 255, cv2.NORM_MINMAX) | |
out_channels.append(normalized) | |
return cv2.merge(out_channels) | |
if __name__ == '__main__': | |
img = cv2.imread(sys.argv[1]) | |
out = simplest_cb(img, 1) | |
cv2.imshow("before", img) | |
cv2.imshow("after", out) | |
cv2.waitKey(0) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment