Created
December 13, 2024 20:03
-
-
Save jbowles/15212d096ff8055b664669389362ca64 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package metron | |
import "math" | |
// CosineSim calculate the similarity of two non-zero vectors using dot product (multiplying vector elements and summing) and deriving the cosine angle between the two vectors. | |
// TODO not fully tested yet! | |
// | |
// Dot Product: | |
// \vec{a} = (a_1, a_2, a_3, \ldots), \vec{b} = (b_1, b_2, b_3, \ldots); where a_n and a_b are elements of the vector. | |
// Cosine Similarity: | |
// cos(theta) = (A dotProduct B) / (||A|| ||B||) | |
// nice post: http://blog.christianperone.com/2013/09/machine-learning-cosine-similarity-for-vector-space-models-part-iii/ | |
func CosineSim(a []float64, b []float64) float64 { | |
// TODO not fully tested yet! | |
var sum, s1, s2 float64 | |
var count int | |
lenA := len(a) | |
lenB := len(b) | |
if lenA != lenB { | |
panic("vectors must be equal length!") | |
} | |
if lenA > lenB { | |
count = lenA | |
} else { | |
count = lenB | |
} | |
for k := 0; k < count; k++ { | |
if k >= lenA { | |
s2 += math.Pow(b[k], 2) | |
} | |
if k >= lenB { | |
s1 += math.Pow(a[k], 2) | |
} | |
sum += a[k] * b[k] | |
s1 += math.Pow(a[k], 2) | |
s2 += math.Pow(b[k], 2) | |
} | |
if s1 == 0 { | |
panic("First vector passed is all zeros. Non-zero vectors required.") | |
} | |
if s2 == 0 { | |
panic("Second vector passed is all zeros. Non-zero vectors required.") | |
} | |
return sum / (math.Sqrt(s1) * math.Sqrt(s2)) | |
} | |
// CosineDist is cosine distance; simply 1 - CosineSim | |
func CosineDist(a []float64, b []float64) float64 { | |
return 1.0 - CosineSim(a, b) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment