Created
May 15, 2012 22:19
-
-
Save jbpotonnier/2705565 to your computer and use it in GitHub Desktop.
Face recognition using OpenCV
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv | |
class Detector(object): | |
def __init__(self, haar_file): | |
self.haar = cv.Load(haar_file) | |
self.storage = cv.CreateMemStorage() | |
def detect(self, image): | |
# parameters for fast detection | |
return cv.HaarDetectObjects(image, self.haar, self.storage, | |
scale_factor=1.2, min_neighbors=2, flags=cv.CV_HAAR_DO_CANNY_PRUNING ) | |
def draw_rect_on_image(rect, image): | |
cv.Rectangle(image, | |
(rect[0], rect[1]), | |
(rect[0] + rect[2], rect[1] + rect[3]), | |
cv.RGB(155, 55, 200), 2) | |
if __name__ == '__main__': | |
cv.NamedWindow('Camera', cv.CV_WINDOW_AUTOSIZE) | |
capture = cv.CreateCameraCapture(0) | |
face_detector = Detector('haarcascade_frontalface_alt.xml') | |
while True: | |
frame = cv.QueryFrame(capture) | |
cv.Flip(frame, None, 1) | |
faces = face_detector.detect(frame) | |
if faces: | |
for (rect, _) in faces: | |
draw_rect_on_image(rect, frame) | |
cv.ShowImage('Camera', frame) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment