Created
February 22, 2015 16:00
-
-
Save jburroni/5141c7dd404fa2257870 to your computer and use it in GitHub Desktop.
part b
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "Ejercicio 2- Parte b " | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"import pandas as pd\n", | |
"from scipy import stats as st\n", | |
"from statsmodels.stats.weightstats import CompareMeans, DescrStatsW\n", | |
"from statsmodels.iolib import genfromdta\n", | |
"import statsmodels.api as sm\n", | |
"import matplotlib.cm as cm\n", | |
"import matplotlib as mpl\n", | |
"import brewer2mpl\n", | |
"import matplotlib.pyplot as plt\n", | |
"import numpy as np\n", | |
"from IPython.display import display, HTML\n", | |
"import pscore_match as ps\n", | |
"pd.set_option('display.max_columns', 10)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 1 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"aguas = pd.read_csv('baseaguas2.csv')\n", | |
"bid = pd.read_csv(\"base_bid.csv\")\n", | |
"bidaguas = pd.read_csv(\"matching_bidaguas.csv\")\n", | |
"bidaguas.sexo = (bidaguas.sexo == 'masculino').astype(int)\n", | |
"bidaguas.bedad = bidaguas.bedad.astype(int)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"aguas['Ypcf'] = aguas.ingresos_hogar/aguas.miembros" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"Mean Equality Test" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def mean_equality_test():\n", | |
" rows = []\n", | |
" covariates = aguas.loc[aguas.jefe==1, ['idhogar', 'treatment', 'jefe', 'gender', 'educacion', 'casado', 'extranjero', \\\n", | |
" 'empleohh', 'desempleohh', 'bedad', 'electricidad', 'techo_malo', 'ingresos_hogar', 'miembros' ]]\n", | |
" covariates['Ypcf'] = covariates.ingresos_hogar/covariates.miembros.astype(float)\n", | |
" treated, control = covariates.treatment ==1, covariates.treatment==0\n", | |
" for column in ['idhogar', 'gender', 'educacion', 'casado', 'extranjero', \\\n", | |
" 'empleohh', 'desempleohh', 'bedad', 'electricidad', 'techo_malo', 'Ypcf' ]:\n", | |
" x = covariates[column]\n", | |
" t, c = x[treated].dropna(), x[control].dropna()\n", | |
" rows.append([column, t.mean(), c.mean(), t.mean() - c.mean(), st.ttest_ind(t, c)[1]])\n", | |
" return pd.DataFrame(rows, columns= ['name', 'treated', 'control', 'diff', 'p-value'])" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 26 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"mean_equality_test()" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>name</th>\n", | |
" <th>treated</th>\n", | |
" <th>control</th>\n", | |
" <th>diff</th>\n", | |
" <th>p-value</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0 </th>\n", | |
" <td> idhogar</td>\n", | |
" <td> 539.164179</td>\n", | |
" <td> 391.500000</td>\n", | |
" <td> 147.664179</td>\n", | |
" <td> 3.058166e-09</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1 </th>\n", | |
" <td> gender</td>\n", | |
" <td> 0.335821</td>\n", | |
" <td> 0.230978</td>\n", | |
" <td> 0.104843</td>\n", | |
" <td> 1.765365e-02</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2 </th>\n", | |
" <td> educacion</td>\n", | |
" <td> 3.902985</td>\n", | |
" <td> 4.285326</td>\n", | |
" <td> -0.382341</td>\n", | |
" <td> 1.312714e-02</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3 </th>\n", | |
" <td> casado</td>\n", | |
" <td> 0.671642</td>\n", | |
" <td> 0.752717</td>\n", | |
" <td> -0.081076</td>\n", | |
" <td> 7.018710e-02</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4 </th>\n", | |
" <td> extranjero</td>\n", | |
" <td> 0.082090</td>\n", | |
" <td> 0.078804</td>\n", | |
" <td> 0.003285</td>\n", | |
" <td> 9.045318e-01</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5 </th>\n", | |
" <td> empleohh</td>\n", | |
" <td> 0.514925</td>\n", | |
" <td> 0.519022</td>\n", | |
" <td> -0.004096</td>\n", | |
" <td> 9.354026e-01</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>6 </th>\n", | |
" <td> desempleohh</td>\n", | |
" <td> 0.179104</td>\n", | |
" <td> 0.211957</td>\n", | |
" <td> -0.032852</td>\n", | |
" <td> 4.194045e-01</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>7 </th>\n", | |
" <td> bedad</td>\n", | |
" <td> 43.970149</td>\n", | |
" <td> 44.945652</td>\n", | |
" <td> -0.975503</td>\n", | |
" <td> 4.789763e-01</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>8 </th>\n", | |
" <td> electricidad</td>\n", | |
" <td> 1.000000</td>\n", | |
" <td> 0.983696</td>\n", | |
" <td> 0.016304</td>\n", | |
" <td> 1.375584e-01</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>9 </th>\n", | |
" <td> techo_malo</td>\n", | |
" <td> 0.940299</td>\n", | |
" <td> 0.687500</td>\n", | |
" <td> 0.252799</td>\n", | |
" <td> 3.360656e-09</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>10</th>\n", | |
" <td> Ypcf</td>\n", | |
" <td> 119.908553</td>\n", | |
" <td> 139.961817</td>\n", | |
" <td> -20.053264</td>\n", | |
" <td> 8.704401e-02</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 27, | |
"text": [ | |
" name treated control diff p-value\n", | |
"0 idhogar 539.164179 391.500000 147.664179 3.058166e-09\n", | |
"1 gender 0.335821 0.230978 0.104843 1.765365e-02\n", | |
"2 educacion 3.902985 4.285326 -0.382341 1.312714e-02\n", | |
"3 casado 0.671642 0.752717 -0.081076 7.018710e-02\n", | |
"4 extranjero 0.082090 0.078804 0.003285 9.045318e-01\n", | |
"5 empleohh 0.514925 0.519022 -0.004096 9.354026e-01\n", | |
"6 desempleohh 0.179104 0.211957 -0.032852 4.194045e-01\n", | |
"7 bedad 43.970149 44.945652 -0.975503 4.789763e-01\n", | |
"8 electricidad 1.000000 0.983696 0.016304 1.375584e-01\n", | |
"9 techo_malo 0.940299 0.687500 0.252799 3.360656e-09\n", | |
"10 Ypcf 119.908553 139.961817 -20.053264 8.704401e-02" | |
] | |
} | |
], | |
"prompt_number": 27 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"Seleccion de ni\u00f1os hasta 6 a\u00f1os" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"ninos = aguas[aguas.bedad <= 6]" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def extract_result(endog, result, ingreso):\n", | |
" return endog.name, endog.mean(), result.params['treatment'], result.pvalues['treatment'], result.nobs, result.rsquared, ingreso" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def dummyfy(dataframe, column):\n", | |
" answer = dataframe.drop(column, axis=1)\n", | |
" for value in dataframe[column].unique()[1:]:\n", | |
" answer[str(value)] = dataframe[column] == value\n", | |
" return answer" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def regress(dataset, column, ingreso, dummies):\n", | |
" columns = [column, 'idhogar', 'treatment', 'techo_malo']\n", | |
" if ingreso:\n", | |
" columns.append('Ypcf')\n", | |
" filtered = dataset.loc[:, columns].dropna()\n", | |
" endog = filtered[column]\n", | |
" exog = sm.add_constant(filtered, prepend=True)\n", | |
" if dummies:\n", | |
" exog = dummyfy(exog, 'idhogar').drop(column, axis=1)\n", | |
" else:\n", | |
" exog = exog.drop(column, axis=1)\n", | |
" ols = sm.OLS(endog, exog)\n", | |
" return extract_result(endog, ols.fit(), ingreso)\n", | |
"\n", | |
"def regress_multiple_columns(dataset, columns, dummies):\n", | |
" results = []\n", | |
" for column in columns:\n", | |
" results.extend([regress(dataset, column, ingreso, dummies) for ingreso in [True, False]])\n", | |
" return results" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 20 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def replicate(dataset=aguas, dummies = False):\n", | |
" ninos = dataset[dataset.bedad <= 6]\n", | |
" hogares = dataset[dataset.jefe==1]\n", | |
" ninos_columns = ['sangre', 'hijodi', 'durdiarrea1']\n", | |
" hogares_columns = ['gastobidon1',]\n", | |
" results = regress_multiple_columns(ninos, ninos_columns, dummies)\n", | |
" #results += regress_multiple_columns(hogares, hogares_columns)\n", | |
" columns = ['Dependent variable', 'Mean dependent variable', '$I_{it}$', 'p-value', 'Observations', 'R-squared', 'Per capita income']\n", | |
" return pd.DataFrame(results, columns = columns)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 17 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 2, | |
"metadata": {}, | |
"source": [ | |
"Replicaci\u00f3n sin variables dummies" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"replications = replicate()\n", | |
"HTML(replications.to_html())" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Dependent variable</th>\n", | |
" <th>Mean dependent variable</th>\n", | |
" <th>$I_{it}$</th>\n", | |
" <th>p-value</th>\n", | |
" <th>Observations</th>\n", | |
" <th>R-squared</th>\n", | |
" <th>Per capita income</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td> sangre</td>\n", | |
" <td> 0.020979</td>\n", | |
" <td>-0.000758</td>\n", | |
" <td> 0.969531</td>\n", | |
" <td> 286</td>\n", | |
" <td> 0.024089</td>\n", | |
" <td> True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td> sangre</td>\n", | |
" <td> 0.017857</td>\n", | |
" <td> 0.000089</td>\n", | |
" <td> 0.995827</td>\n", | |
" <td> 336</td>\n", | |
" <td> 0.009530</td>\n", | |
" <td> False</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td> hijodi</td>\n", | |
" <td> 0.154982</td>\n", | |
" <td>-0.115460</td>\n", | |
" <td> 0.023855</td>\n", | |
" <td> 271</td>\n", | |
" <td> 0.055357</td>\n", | |
" <td> True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td> hijodi</td>\n", | |
" <td> 0.154574</td>\n", | |
" <td>-0.097233</td>\n", | |
" <td> 0.043871</td>\n", | |
" <td> 317</td>\n", | |
" <td> 0.033429</td>\n", | |
" <td> False</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td> durdiarrea1</td>\n", | |
" <td> 0.982517</td>\n", | |
" <td>-1.069338</td>\n", | |
" <td> 0.020032</td>\n", | |
" <td> 286</td>\n", | |
" <td> 0.043258</td>\n", | |
" <td> True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td> durdiarrea1</td>\n", | |
" <td> 0.925595</td>\n", | |
" <td>-1.022513</td>\n", | |
" <td> 0.012402</td>\n", | |
" <td> 336</td>\n", | |
" <td> 0.032901</td>\n", | |
" <td> False</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 21, | |
"text": [ | |
"<IPython.core.display.HTML at 0x108857950>" | |
] | |
} | |
], | |
"prompt_number": 21 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 2, | |
"metadata": {}, | |
"source": [ | |
"Replicaci\u00f3n con variables dummies" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"replications = replicate(dummies=True)\n", | |
"HTML(replications.to_html())" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": [ | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Dependent variable</th>\n", | |
" <th>Mean dependent variable</th>\n", | |
" <th>$I_{it}$</th>\n", | |
" <th>p-value</th>\n", | |
" <th>Observations</th>\n", | |
" <th>R-squared</th>\n", | |
" <th>Per capita income</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td> sangre</td>\n", | |
" <td> 0.020979</td>\n", | |
" <td>-0.008590</td>\n", | |
" <td> 0.896826</td>\n", | |
" <td> 286</td>\n", | |
" <td> 0.801389</td>\n", | |
" <td> True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td> sangre</td>\n", | |
" <td> 0.017857</td>\n", | |
" <td>-0.011990</td>\n", | |
" <td> 1.000000</td>\n", | |
" <td> 336</td>\n", | |
" <td> 0.802020</td>\n", | |
" <td> False</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td> hijodi</td>\n", | |
" <td> 0.154982</td>\n", | |
" <td>-0.178769</td>\n", | |
" <td> 0.293805</td>\n", | |
" <td> 271</td>\n", | |
" <td> 0.805114</td>\n", | |
" <td> True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td> hijodi</td>\n", | |
" <td> 0.154574</td>\n", | |
" <td>-0.144035</td>\n", | |
" <td> 1.000000</td>\n", | |
" <td> 317</td>\n", | |
" <td> 0.808896</td>\n", | |
" <td> False</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td> durdiarrea1</td>\n", | |
" <td> 0.982517</td>\n", | |
" <td>-1.403370</td>\n", | |
" <td> 0.323741</td>\n", | |
" <td> 286</td>\n", | |
" <td> 0.832126</td>\n", | |
" <td> True</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>5</th>\n", | |
" <td> durdiarrea1</td>\n", | |
" <td> 0.925595</td>\n", | |
" <td>-0.960339</td>\n", | |
" <td> 1.000000</td>\n", | |
" <td> 336</td>\n", | |
" <td> 0.812489</td>\n", | |
" <td> False</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>" | |
], | |
"output_type": "pyout", | |
"prompt_number": 18, | |
"text": [ | |
"<IPython.core.display.HTML at 0x1088427d0>" | |
] | |
} | |
], | |
"prompt_number": 18 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 1, | |
"metadata": {}, | |
"source": [ | |
"Propensity Score" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"def treatment_effect(column, title, idh = True):\n", | |
" interval = np.logspace(-2,-3)\n", | |
" means = []\n", | |
" ci_min,ci_max = [], []\n", | |
"\n", | |
" columns = [column,'treatment', 'Ypcf', 'gender', 'bedad']\n", | |
" if idh:\n", | |
" columns.append('idhogar')\n", | |
" ninos = aguas.loc[aguas.bedad <=6, columns].dropna() #, #'sexo', 'bedad']].copy()\n", | |
" for radius in interval:\n", | |
" psmatch = ps.PropensityScoreMatch(ninos.treatment, ninos.drop('treatment', axis=1), ninos[column], algo='radius', radius=radius)\n", | |
" psmatch.fit()\n", | |
" means.append(psmatch.treatment_effect())\n", | |
" ci = psmatch.confidence_interval()\n", | |
" ci_min.append(ci[0])\n", | |
" ci_max.append(ci[1])\n", | |
" plt.plot(interval, means)\n", | |
" plt.ylabel('treatment effect')\n", | |
" plt.xlabel('radius')\n", | |
" plt.title(title + ' (obs: %d)' % ninos[column].count())\n", | |
" fig = plt.fill_between(interval, ci_min,ci_max, alpha=0.2)\n", | |
" #plt.savefig('pscore.png', format='png')\n", | |
" display(fig)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 20 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"treatment_effect('hijodi', 'presencia de diarrea')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"text": [ | |
"<matplotlib.collections.PolyCollection at 0x1095f15d0>" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW9P/7XOTNzZs1KtpEkJEGFAhLEpaBRwVbgYtsL\nZRGruKL0av0qWmq1IkKEqtSCC9+6oBj8WW1DldDr11LFBa2AQggJskhkCySTkH2SzHrO5/fHJEMm\nmcmcSWY5Ce/n45FHcs6cOeeVyWTecz7LGY4xxkAIIYREEB/rAIQQQoY+KjaEEEIijooNIYSQiKNi\nQwghJOKo2BBCCIk4KjaEkLD67rvvYh1B8VpbW3HmzJlYx4gqKjYkKrZt24Y777wzascrKChAUVFR\nxI+TmZmJHTt29FrvcDhw/fXX4+TJkxHPoBSMMfzmN7/B22+/HdL9Tpw4AZ7nIUlShJLJ97e//Q0X\nX3wxMjMzkZubi9WrV/vcfvr0aWRlZfl8JSQkYNq0aT7blZWV4dZbb4UgCNi+fXuv49TV1eGXv/wl\nDh8+HNHfR0nUsQ5Azg/Tp0/H9OnTo3Y8juPAcVxUjuOPVqvFp59+GvHjK8nzzz+PpqYmvPzyy7GO\n0m9Tp05FWVkZDAYDjh49imuuuQaZmZm47bbbAHjeXFRVVfnc5+qrr8avfvUrn3WPPvoo/vu//xuf\nf/653+fIhRdeiNdeew0LFizArl27oNPpIvdLKQSd2UTRU089hblz5+KBBx5Abm4ucnNzsXHjRp9t\nut7lffnll5gwYQKGDx+OO+64w2ebw4cP46c//SkyMzNx6aWX4rPPPvO53eVyYenSpcjLy0N2djby\n8vJ6vftubm7GXXfdhezsbIwaNQovvPCCz+1vvfUWCgoK8OqrryI/Px8pKSn47W9/2+t32rJlCyZN\nmoSsrCxkZmbi4Ycf9rn9j3/8I7KysjBs2DBcc801ve7vdDrxxBNPID8/H5mZmbjooouwZcuWoI9l\nTy+88IL3d12yZAncbnevbd5880386Ec/QnZ2NubPn4/GxsaQjsEYw+OPPw6z2YxRo0b1etcLAD/8\n8IP3HS/P8zh27FivbUpKSvDTn/4UF154IdLS0rB48eJe7+qnTJmCdevWYcGCBcjKykJOTg7Onj3r\nvT0cz5OmpiY89NBDGDt2LMxmM8aPH4+vvvoqpMeki8ViwcqVK/Hiiy/2uq21tRW//vWvkZubixEj\nRuDmm29GXV1dr+02b96MCRMmIC0tDb/61a/Q1tbmc/szzzyDUaNGITs7Gzk5OXjvvff8Zrnsssv8\n5pAjLS0NBoMBAHDRRRfhuuuuwzfffBNw+88++wxVVVVYuHChz/pt27bhvvvug0ajCXjf/Px8TJky\nBWvXru1X1kGHkahZvnw5S0pKYl9++SVjjLGvv/6a6fV6VlFR4d3m+PHjjOM4Nn36dFZTU8MYY6yl\npcV7u9VqZcOHD2cvvvgiY4yxsrIylpqayqqqqrzbvPbaayw/P581NTUxxhhzOp3M6XT6ZPnFL37B\nbr75ZuZwOFhDQwPLz89nxcXF3ts3btzIdDodW7duHRNFkX3//fdMrVazH374wbvN66+/znJyctje\nvXu9686ePev3d3/rrbdYQUGB39s+/PBD5nA4GGOMvfnmmyw+Pp6JohjoYexl27ZtLCkpiZWXlzPG\nGCspKWFarZYVFRV5t3n//feZ2WxmR44cYYwxtmzZMnbjjTfKPgZjjL366qssNzfX+1i/8sorjOd5\n9sUXX/jdnuM4n8ery+7du9np06cZY4ydOXOGmc1m9ve//91nm+uuu45lZmaykpISxhhjra2tPreH\n43lit9vZtm3bvI/1k08+ycaMGSP/AenmmWeeYTNnzvR72+zZs9ltt93GHA4Hc7vdbOnSpWzSpEm9\nfpfHH3+cuVwuZrVaWUFBAVuyZIl3m3//+9/MbDZ7HzdRFFlHR4ff491yyy0+z+WBuOSSS9irr74a\n8Paf/OQn3sfYn5ycHLZ9+/aAt+/evZtdeOGFA8o4WFCxiaLly5ezhQsX+qybN28ee+qpp7zLXf94\ngV603333XTZ69GifdYsXL2arV6/2Ln/00UcsIyOD/eMf/+j1IsUYYzU1NYzjOGaxWLzr/vrXv7Jp\n06Z5lzdu3NirOAwfPpx99tln3uULL7yQ/e1vf+vjNz7H3/78aW1tZRzHsVOnTsnaL2OM3XHHHWzp\n0qU+6woKCnyKzfTp09kzzzzjXXa5XMxoNLLq6mrZx5kyZQpbv369z7rMzMyQi013kiSxefPmsRUr\nVvQ61po1awLeLxzPk57Ky8uZSqXqM28gN910E3vooYd6rbdYLIznedbc3Oxd53K5WEpKCvvmm28Y\nY+d+l+5vMD766CM2YsQIn2wJCQnsrbfeYvX19f3KGKr//d//ZZdccgmz2+1+b9+9ezdLTU1lNpst\n4D6CFZuGhgbGcRxrb28fcF6loz6bKGM9LkU3YsQI1NbW9touOTnZ7/2rqqpQVVWF3Nxc7zq73Y75\n8+d7l2fMmIF33nkHmzZtwgMPPIAJEyZg/fr1yMnJ8e6D53lMmjTJex+32420tLQ+s2s0Gp/mnpMn\nT2LMmDF93keOTZs24a233oLT6YRerwfgaQqUq7a2FldeeWWf21RVVWHt2rV45ZVXvOt0Oh1OnToF\ns9ks+zjdH/f++u6777B69WocP34cGo0Gx48fx+jRo3ttF+g5IGcbOc8TxhjWrVuHDz74AJIkeTvp\nu34OhdVqxciRI3utP3nyJJKTk5GQkOBdp1arMWLECJw6dQpXXHGF3/1lZmb6NBtecskl2L59OzZs\n2IDly5cjOzsbL774IiZMmBBSTrlOnjyJJUuWYMuWLdBqtX63Wb16NR566KEB9bcYjUYAnqbGrua7\noYqKTZT17EuorKz0edEPZuTIkbj00kvx5Zdf9rnd9ddfj+uvvx6SJOH3v/897rzzTm+bfV5eHtRq\nNQ4dOjSgf5QRI0agtLQU48aN6/c+tm7disLCQvz73/9Gbm4uGGNQqVQh7SMzM7NX34goij7LI0eO\nxMMPP4y7776731nlHCcYt9uNqVOnYu3atbjlllsAoFdfSzjIeZ689NJL2Lx5M95//32kp6fj+PHj\nfguGHDk5OX7fNGVnZ6OxsRENDQ0YNmwYAM9IvePHj2PEiBE+27pcLu8L+9GjR3vdftlll+Gyyy4D\nALz88suYPXs2jh8/3q+8fbFYLJg1axbeeOONgG+mDhw4gC+++AKbNm0a0LFqa2uh1WqRkZExoP0M\nBjRAIMo++OADlJSUAAA++eQTbNu2DQsWLJB9/xtvvBH19fVYs2aN992/zWaD0+n0bmO1WtHQ0ADA\n82Locrl83jUNGzYMCxYswB133IGmpibvdj07ZIP57W9/i0cffdTnBc3fC05fTp8+jeTkZGRmZqKt\nrQ333XcfeJ4P6czm5ptvRlFREY4ePQpJkvDSSy/h22+/9dlmyZIlWLFihU9nb9fvHspxXnzxRdTV\n1cHpdOL3v/99yL+vzWZDY2Ojt0Bv2bIFW7du9fn7del5FhwKOc+T06dPIyMjA2lpaaivr8fSpUsB\nhHZW2WXWrFl+h4BnZGTgF7/4BX7zm9/AbrfD7Xbjd7/7HS666CJcfvnlPtsuXrwYDocDjY2NWLly\npc9QeZfL5Z2XIkkSnE5nwDOBW265BcXFxSH/DoDn+fvzn/8ca9eu9Tugpcsf//hH/PrXv0Z8fHzQ\nffb1d/ziiy9w44039ivrYEPFJoo4jsPPfvYzlJSUICsrC3fddRfeeOONXu/g+hqyq9VqsX37duzf\nvx8XX3wxcnJy8OMf/xgHDx70blNeXo6rrroKWVlZGDlyJCwWC9544w2f/bzyyiu46KKLMGnSJGRn\nZ2P06NHYvHmzT4ZgQ4cXL16Ml156CY888ggyMzORnZ2NFStWBPzd/e3vjjvuQEZGBrKyslBQUIDr\nr78eWVlZIU14mzp1Kh588EFMmjQJI0eOxNmzZ3udLU6dOhWvvfYaHnzwQWRlZSE3NzfkeT+33347\npk2bhlGjRuGSSy5BZmYmhg8fHnB7f79vXFwcXnrpJcyYMQMjR47Exx9/jHvuuQfV1dWy7i/3djnP\nk0ceeQT19fW44IILcOONN+Lee++FWq3u12TDG264AUlJSdi6dWuv24qKihAXF4fRo0cjLy8PdXV1\n3jdc3X+X66+/HhMnTkReXh4uv/xyn5GNJ0+exPTp05GVlYURI0bg008/xfvvv+83y5EjR2CxWEL+\nHQDgoYcewqFDh7Bw4ULvqMK5c+f6bHPs2DH885//xJIlSwLuJzExEUlJSaiqqsKsWbOQlJTUa1Sb\nKIpYv349HnnkkX5lHWw4NpC3TyQkK1asQGVlZciT3ggZDI4dO4af//znKCkpwYUXXhjrOIq3dOlS\n6PV6rFy5MtZRooLObKKI6joZyvLy8vD+++8P6kmd0VJaWgqTyXTeFBogygMEysvLvU018+fP77Nj\nOdC2oexDaaI1q52QWBk1ahTWrVsX6xiKN3HiREycODHWMaIqasVGkiQUFxdj2bJlAIBVq1Zh7Nix\nfl98/W07bty4kPahRMuXL491BEIIiYmoNaNZLBaYzWYIggBBEJCenh6wE8/ftjU1NSHtgxBCiHJE\n7cymra0NRqPReyVeg8EAq9Xqd0JdoG0ByN6HvyutEkIICe4nP/lJ2PcZtWJjMpnQ3t6ORYsWgTGG\nDRs2BByjHmhbSZJk7wPAedcmSgghA1VaWhqR/UatGS0jIwM1NTXeZYvFEnDWbKBtQ9mHEvX3irqR\nRJnkU2IuyiQPZYq9qJ3Z8DyPuXPnorCwEAAwb9487207d+6EVqv1nokE2ravfRBCCFGuITupc/v2\n7dSMRgghISotLY1Inw1N6iSEEBJxVGyiSIlttJRJPiXmokzyUKbYo2JDCCEk4qjPhhBCiBf12RBC\nCBm0qNhEkRLbaCmTfErMRZnkoUyxR8WGEEJIxFGfDSGEEC/qsyGEEDJoUbGJIiW20VIm+ZSYizLJ\nQ5lij4oNIYSQiKM+G0IIIV7UZ0MIIWTQomITRUpso6VM8ikxF2WShzLFHhUbQgghEUd9NoQQQryo\nz4YQQsigRcUmipTYRkuZ5FNiLsokD2WKPSo2hBBCIo76bAghhHhRnw0hhJBBi4pNFCmxjZYyyafE\nXJRJHsoUe1Rs+iBKQ7KFkRBCoo76bPrQYnPB7paQZhLAcVyYkhFCiHJFqs9GHfY9BlBeXo7NmzcD\nAObPn49x48b1a/v169ejuroagiDguuuuw5QpUyKW2e6W0OIQITEn0uME8FRwCCGkX6LSjCZJEoqL\ni/HEE0/giSeeQHFxMfo6ofK3fReO47BkyRIsX748ooUGADpcEgDA6hRR1WxHrdWBJpur381rSmyj\npUzyKTEXZZKHMsVeVIqNxWKB2WyGIAgQBAHp6emwWCwhbV9TU+O9XW7LX/c/5ldffRXa8s7d2FO6\nz7u8e+8+fLF7L862u9DhFEPf31dfoaKiov95aDnmy/T3G7zLFRUVisqj9OdTJIS9z6a8vBwlJSU+\n6+bMmYNvv/3Wu8wYw1VXXYWLL77Y7z6+//577Ny50+/2GzduxLFjx2AymXD77bcjIyPD7z4G2mfT\nbHOhrt3l97YErQrpcdp+75sQQpRq0PTZjB8/HuPHj/dZV11djfb2dixatAiMMWzYsAHx8fEB92Ey\nmQJuf+eddwIATpw4gbfffhtLly4N968AALB1NqH50+ESI3JMQggZqqLSjJaRkeHTDGaxWAKekcjd\nXqPRQK2OzPgGxlifBcUlAbZ+FJxIn6b2B2WST4m5KJM8lCn2ojIajed5zJ07F4WFhQCAefPm+dy+\nc+dOaLVab7NXX9uvW7cOTU1N0Ov1uPvuuyOS1+6WIAZpXLS5JOg1qogcnxBChhqaZ+NHo82F+gD9\nNV0Mah6Zibp+7Z8QQpSKro0WRQ4ZTWQ2t0RXGCCEEJmo2PjhCtaGBoAB6HCG1m+jxDZayiSfEnNR\nJnkoU+xRsemBMQanjGIDADY3jUojhBA5qM+mB6co4USTXda2Gp5DbrI+5GMQQohSUZ9NlLhlntUA\ngEticLoDz8chhBDiQcWmB5cYWvFwhrC9EttoKZN8SsxFmeShTLFHxaYHV4gjzEIpNoQQcr6iPpse\nalodsIYwyixO4GGOp/k2hJChYdBcG01J3BKDmg/tM2hcUmhnKnb3kKzVQ5YoMc8XY96fVTwHvUYF\nVYjPlVCO6ZYYJMYgqPiIHYcQJRvSzWiuEDvvQxn27D2GxGT38yixjXawZxI7H3+7W0KHU4TV7kaz\nzYWGDifOtjlR0+rA6RY7TjbZ8ENDB4412nCi2Y6qFgeqrU7UtrtQbXXieKMN1a12NNlccAR43vjL\nJUoMdpeINse549a1OXCmxY5T3Y55svOYxxttON1sR327E+0O94AnBkf77yd2Dorp/lg3dbhgtbvR\n4RRhd0v4z85dsj8GJFoG+/N8KBjSZzZOSYIe8q9f5pIY+vO/73RL0KiGdN2OGcYYWuxutDtFSIyB\nMUBkgMR8/1YDfWmTALQ5JbQ5JQAuaFUcjIIKejUPnUblOTNRCWiyueASJbhEzxsTt8RCOrYEoMMt\noaOzoHEAdGrPmZVOzUf0DCsYUWJwuCW4u52Jdf187uws+GNd08FQ2WCDmueg5gEVz0HNc+A5DiqO\n8/5+/gpS9zU9b+Y4z+PFcVznd3g/PTfQbXQWqRxDus8me9Q4pBgF2ffpcIo43eoI+VgpBg2SDZqQ\n70f61u5wo6HDBXuIZ5vhxmHgxSyUY2lVHAQ1D0HFQ1BxEFQ8NCoOXJg+llyUGJyiBKdb8gzfFyU4\n3KEXTqXjAPAcoFXxENQcNLzn8dSE+fEcaqjPph/kNG853RIENS97e38CNbuQ/nG6JTR0OGF1KuNx\njeYLMANgFxnsogjg3EAVHoBWzUGr5qFR8RB4z4smg+cMoessr+vnrvUMgNR5JugUJThFBpc4tIpK\nIAyes2DPmSTg83hygKDioFV5Hk8Nz0Gj9hQjnopQRAzpth+HjHfEzXYX7J0X3nT38yTPMUj7bGxO\nEV/u3I0Opwiby9Pe3t+CGw6ixNDQ4cQ/d+xWTKHprqysLGbHlgDY3AzNdhFn2104Y3XiRLMdWz/f\nhVMtDpxu9XydsTpR0+aEpc3TH1XX7kJ9hwuNNjfanJ5iE+lCE8vHKZCemSTmGdzT4hBR3+FCTZsT\np5rt+KHBhpNNNtS0evrVmm0utDvccLglSGFuBFLa60GkDe0zm26jjQJpd0oQJTfMGpWsC3D6PU5n\n232oI99iyeYSUdXqQE27b9MhDyDZoEaSXhO1Zga7W4LNKaLZ7vb+zYg89EiFF4PnTarnjarvGx4O\ngJrnoFFxEFQc1LznjEjd2TQX6P9f7Oz/6jrDZJ3f3bwGzTaXd31XMePAgec7v3NdzYGdP3d+5zlO\ndr9U1xku6zzj7crgPfvtfBJJ3X6OhCHdZ2PKHo3sBC10AT7kzO6WcKrZcx207EQd6toc/R7KnBmv\nhUEYHB+mxhjD6RY7bH38rjo1hzSjEPCxGyibS0SHS0S7Q4x5nwwhA9XVP6RReV74JQZIEvN+CGMk\nnuHdS0xXAVJx8DadMsYgofdAi2BZ2k4dpj6b/nCKDLoAfffdP9q5xebq95kN4GlKM4Qw8i2WWh3u\nPgsN4GliON3iCHiW0zXkmOHcuyxVt3dbjHn+0dwS8/zTdc5tcYkM7S4x5CHmhChZV/+QGMV5d92P\nJDJ4/r+idvTQDek+GwCwu0XvXICefIqNQwz6UdB9kXNBTiW00bolhoZun0LaV/u6BKC+w42qFk/7\ntcXqQFWzDcc6546canGgqsWBk812nGiy41ijDT802FDZ0IHKBhuON9pwqtmO060O1LQ5UdfuQpPd\nHbTQKLHNH1BmLsokD2WKvaDFZs+ePT7LkiThzTffjFigcGu2i6hrd6Ghw+VTECTG0BHGTuhwjEhz\nuCXUtTki2mfR2OFEqG++7G6GRpsbrQ4RNjeDO8BcC4Zup/Cg/gRCyDlBi83WrVt978DzqKqqilig\nSJEANNnOvaO3uySEc7yTXWQ41WzzfrXYe59JFRQUeGe29xzZ0uEUcabFjma7iKoWe8ifAiqHzSWi\n2e673wkTJoT9OAOlxEyAMnNRJnkoU+wF7LM5ffo0Tp8+DavVit27d4MxBo7j0NLSgvr6+mhmDJsW\nh4gEnQiHW0KL3R32/XcfXOBoc0HD8z6DBlrtbjR4BvzD5hKRZvJ0wFvtbtS2Ob3FzykynG51IFmv\nxjBD+EaF1bc7w7IfQggJVcAzm5qaGuzduxdtbW3Yu3cvSktLsXfvXpw8eRL3339/NDOGVVWLA7Xt\nkZ+VzgBYrA5v81qHU8TH//nWe7td9HTAW6ye/gx/Z1mNNjd+aLDheGMHTjTZcKrJhjMtnut3hfqh\nbS02l99BAUpsN1ZiJkCZuSiTPJQp9gKe2VxxxRW44oor8Morr+DXv/51NDNFVDT7EdzMU3DSjAIs\nVgfEHk1nEoBWR9/NZRIAz4WoO+8rMrS7JJyFC3o1B5Og7rzuVOd1oTrH5btEBpfE4JYkON0MdrrK\nASEkhqI2z6a8vBybN28GAMyfPx/jxo3rc/tDhw5h06ZNGDNmDBYuXBjyfrrm2ShBNK+tRQghAzGo\n59lIkoTi4mIsW7YMALBq1SqMHTu2z74Il8uF2bNn48iRIwPajxJQoSGEnO+CjkY7fvx4r3WHDh0K\n6SAWiwVmsxmCIEAQBKSnp8NisfR5n/Hjx8NkMg14P0qixDZayiSfEnNRJnkoU+wFPbN544038PTT\nT/use/fdd7Fy5Uq/25eXl6OkpMRn3Zw5c2A0GlFUVAQAMBgMsFqtMJvNIYVta2sLaT/7y8qQ3zm8\nsOsPOyGGy5VHK2N6fH/LXZSSR8nL9PcbvMuVRysVlUepz6dIDscO2mfz5JNP9iosy5YtQ2FhoeyD\nVFdXY8uWLVi0aBEYY9iwYQPmzJmDjIyMPu938OBB7N2719tnE8p+lNRnQwghg0Wk+myCNqOpVCqf\neTU1NTXg+dCucpORkYGamhrvssViCVpogN6f5Nff/RBCCImtoM1o8+bNw8qVKzF58mSIooivv/46\n5Hk2PM9j7ty53rOhefPm+dy+c+dOaLVaTJw40btuy5YtKCsrQ3NzM2w2G+69996g+1G6srIyxc0a\npkzyKTEXZZKHMsVe0GIzZswYPPHEE9i3bx84jsNTTz2FtLS0kA+Un5+P/Px8v7dNnjy517pZs2Zh\n1qxZIe2HEEKIMg35z7MhhBAiX8z6bACgrq4O+/bt8y7b7fawByGEEDJ0BS02O3bswAsvvIC//vWv\nADyd9qtXr454sKFIiePqKZN8SsxFmeShTLEXtNhs27YNTz31lHeCpdJn6xNCCFEeWUOfNZpzn6ts\nt9vhdNKl6vtDiSNPKJN8SsxFmeShTLEXdDTaRRddhHfeeQcdHR3Ys2cPtm7dioKCgmhkI4QQMkQE\nPbO55ZZbkJqaitTUVHz55ZeYNm0afvazn0Uj25CjxDZayiSfEnNRJnkoU+wFPbPheR7Tpk3DtGnT\nopGHEELIEBRwno0kSSFflkZJaJ4NIYSELurzbNasWQMAWLt2bdgPSggh5PwSsNi0tLQAAJqamqIW\nZqhTYhstZZJPibkokzyUKfYC9tmkpaXh/vvvR2trKx555BGf2ziOw5/+9KeIhyOEEDI09HlttJaW\nFjzzzDN4+OGHe13uvz8X44wm6rMhhJDQRarPps/RaAkJCZg4cSJSU1PDfmBCCCHnj6DDzQbbZ8Yo\nmRLbaCmTfErMRZnkoUyxN3jHNhNCCBk0AvbZvPvuu7j55pvxwQcfYPbs2dHONWDUZ0MIIaGL+jyb\nw4cPA4DP59gQQggh/RGw2DidTqxfvx61tbXYuHEj3nzzTe/Xxo0bo5lxyFBiGy1lkk+JuSiTPJQp\n9gKORnvsscdw4MABfP/998jNzY1mJkIIIUNMn/NsAM9la5YuXRqtPGFDfTaEEBK6qPfZdBmMhYYQ\nQoiy0NDnKFJiGy1lkk+JuSiTPJQp9mQVmx07duDvf/87AIAx5h2pNtSJEut1mR5CCCGhC9pnU1RU\nBFEUUVlZidWrVwMAli1bhsLCwpAOVF5ejs2bNwMA5s+fj3HjxvW5/aFDh7Bp0yaMGTMGCxcu9K5f\nv349qqurIQgCrrvuOkyZMsXv/cPRZ/PSf6qg4jnccmkGEnSesRSixCAxBo2KTgoJIUNPTK6NBgCV\nlZUoLCzEihUr+n0QSZJQXFyMZcuWAQBWrVqFsWPHguO4gPdxuVyYPXs2jhw54rOe4zgsWbIEKSkp\n/c4jR6vdjVPNdlybm4hnPjuBn1yYjDMtDhyobcOoVAMWXTk8oscnhJChRNbbc1EUvT9bLBZIkhTS\nQSwWC8xmMwRBgCAISE9Ph8Vi6fM+48ePh8lk8ntbNJq29te0YWy6ET8fk4p7fzwcZ1ocyBumx4MF\nWThytgOiFHoGJbbRUib5lJiLMslDmWIv6JnNDTfcgMLCQtTX16OoqAi7du3C4sWLA25fXl6OkpIS\nn3Vz5syB0WhEUVERAMBgMMBqtcJsNoccWK/X48UXX4TJZMLtt9+OjIyMgNvuLytD/oQJAM79YSfI\nXP7ySDV+FOcGcAFyk/VoOXUEaAEycydgmEGDT76pQLpOkr2/srIyVB6tDGn7aCx3UUoeJS/T32/w\nLlcerVRUHqU+n7qWIyFonw0AVFVVoaKiAmq1GhMmTAj5s2yqq6uxZcsWLFq0CIwxbNiwAXPmzOmz\nUADAwYMHsXfvXp8+my4nTpxAcXFxwKHZA+mzaXO48dTHx7F6xkgI6t4nf1sO1EFQ85g5OrJNeYQQ\nEm0x67MBgKysLGRlZfX7IBkZGaipqfEuWyyWoIUG6Lu5TKPRQK2WFT9k5ZY2/CjN4LfQAMDoNCP+\n3+EGzKQ5o4QQIktUhlTxPI+5c+eisLAQTz/9dK/PyNm5cydKS0t91m3ZsgXFxcXYu3cvXnvtNe/6\ndevWYflxKJJ5AAAgAElEQVTy5Xj77bdx6623RiRvWXUbJlwQF/D2vGF6nGm1w+YSA27jd78KbKOl\nTPIpMRdlkocyxV5kTg38yM/PR35+vt/bJk+e3GvdrFmzMGvWrF7rH3roobBn667DJeJYgw13XX5B\nwG0EFY+cJD2O1tsw3ux/EAMhhJBzZPXZDEb97bM5WNuOT4424v8U9N1s+PH3DWi2uzFvfHp/IxJC\niOLE7Npo55szrQ4MT9AG3W50mhGH6zqikIgQQgY/KjY9VLc6cEF88GIzPEGLdqeIpg6X7H0rsY2W\nMsmnxFyUSR7KFHtUbHqobpFXbHiOw8WpBhw+S2c3hBASDBWbbtwSQ12bE+Y4Qdb2F6UYcKzBJnv/\nkZww1V+USb7+5mKMwepwo7rVAZcY2tU3IpUpkiiTPErMFEn9Go3mcDig1QZ/9z/Y1FqdSDZoAs6v\n6Sk7UYcvjzdHOBUZKIkxtDtFtNpFWB1utNrdaHWInd/d0Kl55CTrkZesR6pR0+c1+/xxSwyNHS40\n2Vxo7HCjyeZCU4cbjTaX92eNioNJq0KzzY2sRB3ykvW4cJgeucP0MGhUEfrNw8vhltBqd6Olx+Mn\nSQwmrRpxWhXiOr+btCqYBBVdsJZ4BS02xcXFPvNiJEnC888/j8cffzyiwWJBbn9NlwviBZxtd8Lp\nlmQVqLKyMsW9mxlMmRhjcEkMdpcEh1uCvfPL5pLQ5nDD6hDR5vQUFKtDRJtDRJvTjTaHCJ1GhXit\nCvE6NeK1asTrPD9nJmjR4ZJwsLYdHx6qh1NkyEnSITdZj9xkHXKS9NCqeUiM4eu95UgdcSHq2lyo\na3N6v5psbiTo1Eg2qJGk1yDZoEFOsg6X6uO867Sdzw+7S8KJJht+aLBhe2UTTu6pRopBQN4wPUZ2\nfiXpNQN+rEIlMYb6dheqWx2oa3N2FhURrd7i7IYkAfE6NRJ0nqKSoFMjXqcGr/ZcuPZMqwNtDjfq\nmtvg5jWwOkRo1TxMwrkiFKdVQd9ZXFnn35Sxzp97LjMGqfNnANDwHNQ8B43K812t4j3LPAd157qu\nbdQqDhqeR5JBjUSdGvv37x80z/OhKmixqaio8Ck2PM/DZpPfdDSYeIqNvCY0ANCoeJjjtKhqcWDk\nMH0Ek52/6tqceP9AHY412GB3S+A5Djo17/nS8NCqeeg1POIENUxaFZL0amQlas+9wxZUMGnVUPN9\nn61MGZkEAGi2uXGiyYbjjTZ8eKgep1sciNep0Wp3Qw0thtsbkGoUkGYScFGKAWkmDVKMQtD9d9Fp\neIxOM2J0mhGA5yMrqlrsONZgQ+kZKzaX10Gt4nBBvBYXxAkwx2thjtciwyTIPuPui8Q8Z2E1rU7U\nWB3e77VtTsRr1TDHC0g3CUg2aJCbrPcpzjo1L+usz/Mi+iNIjMHmkmB1eAq+1eF5I9DhksBzAAfP\nVdw5788Ah+7LnHc7Bs8ZpEtkcEueL4fD7VnXuey9rfO7U5TQ0OGCS2SI47UoF2uQESd0fmkxzKCB\nSubfjQxcwHk2+/btw759+7B7925MmjTJe+mYlpYW1NTU4Lnnnotq0FDJnWfT/azk/+48jYKcBIw3\nB756QE9/21+LNJMGU0cm9zsr6c3hlvCvIw34+mQLpl2cjEnZCdCp+ai/OLg6X7ASdRroNJFvEmKM\nob6rGLQ6vAWhrs2JRL3aU3w6i1CqUQCD50XWJXpeXD0/S3CKnhdhV+e6VocbNa1OWKwOGAQVLojT\nwhwvePeXEaf1nn0NNe1OERarE7VWByxWJyxtTtRaPWdvqSYN0k1abxFKj/O8kRDO4+a/qF8bLSkp\nCXl5edi/fz9yc3O96wVBwCWXXBL2ILHy7OcnMXP0MFyWGS97JFp32Yk6fE8j0sKGMYbSM1Z88N1Z\nXJRiwOPX53g/uC4WNCoeGXHR65/kOA6pRgGpRsHn6hSixHC23ek9EymrtuJsuwsqzpNRUHHQqHho\nOpuZuq/Ta3ikGPW4ekQizPGCtxnrfGEUVN4myu6cbgm1bU7UtjlhsTpRVm2FxepEfbsLJq0KKUYN\nUgwChhk1GGbQeJaNGpgEVcj9eqSPYpOTk4OcnBzY7faAn4Y52FkdbtS3O7Hlu7MYOUwPu1tCskF+\nezngKTYfH22Qta3S2mg7XCIOVFTg0vzxUPEc+Bj/A1W3OlBcXouGlnbc8eMRuDDFENM8PcXy76fi\nOWTEaZERp8WlOHfmrbTnFDB4MglqHlmJOmQl6nzWixJDk82Fhg4X6ts93yssbWhod6G+wwWXKCHF\nKCClswh1L0TJBg0YA2wuCXa3CLtLgs0tdX73LHf1M56pPQtDfKJn2871bolBUHHQqj1NxLrO777L\nnberet8uqHiIzHNG29W06BIZXJLk/dnddcbrvb3bthLDfw+LzN8g6FvGGTNmRObICnCq2Y6Rwwww\nCjze2WeBOV4I+QU3I05Ai90Nm0scVO8Yvz7ZjOLyOkDS4d3TlXB3fhicXuP56IRr8xKjUnycooTD\ndR0oq7biYG07Zo4eBpOxUXGFhpw/VDzXWUwEjErtfbvNJfoUoto2Jw7WtqO+w4nGDjc4DtCreeg1\nKm/foq6zb7FrXZJeDbdWwkXD46Hvdrua5+BwMzjcEhyiZyBM12CYrp/bHBIcbuZZ12Mbp1uCiucg\nqPjOQRKdZ7q8Z1noGkjR7SxYzXPQa1Sd20Xuf/68vjbaR4fr4RAZCnIS8PT2E5iUHY8FE4J/9EFP\na788hZmjh2FUqrG/caOq2ebCM5+dxP8pyPJpNpSYZ57Ru2W1kBjDLZdmRKQJye6S8F1tG/bXtOFQ\nXTsyE7TIN8fh8sw4mLSxazIjZKAYY4O+iS1mn2dz5MgR/Pvf/0ZHh2+/xKOPPhr2MNF2qtmOK7MS\nkGIUMHtcKlKN8keidZedqMOpJvugKDaMMfxtfy2uzUvs1T/Fc56mmgcLsvDV8Was/bIKU0cm4acX\nJfcabSUxhha7G26RQcVzUHUOOeU5dL47k2B1eIbOWjvnZFgdIixWB47W25CXrMeEC0yYNz4NcVRg\nyBAx2AtNJAX9L1+/fj1++ctfIjX13PnkYHlAm2yugHMWGGM42WT3XrX5urykfh8nO1GH8hpr0O2U\n0JZdesaK+nYX7rrigoCZeI7DtXlJGJdhwnv7a/Hc5ydxZVY8Gjs8bdYNnc0HBg0PQc1DlBjEzuGn\nImMQJUBQcYjrHDIbp1V757hcnhmPhZeZ+5zIqITHyR8l5qJM8lCm2AtabNLT0wftAIGDte24OifR\n723NdjckBiTpB/6uekSSDv88dHbA+4m0Nocb/6iow70/Hi5rZneyQYP/mTQce05bcbLJhlSTgDHp\nRm+naDjmfRBCzg9B+2w++eQTxMfH48orr4xWprDYvn07PmxKwk35/j9vZn+1FV+fbMH/TM4c8LEk\nxvDo/6vEkz/NHVCT0AFLG7483oyCnESMyzCG/QyyaG8NTIIKcy5JC+t+CSFDR8z6bIqKiuB2u6HR\nnGuO4jgORUVFYQ8Tbmda7AFvO9lsR3aPIY/9xXOcp9+m2Y6x6YE/uVOUGN78thoqnuvVV/H5D034\n9/cNmHbxMPzv4Xp8eLgeM0YNw3izKSyjwr6ztOFYgw2PX58z4H0RQkioghabt99+Oxo5IuJMqwMS\nY35frE822TF1ZP/7aXrKTdZj47c1EFSeY2Ul6nD75ef6JhhjWP/pQaiNCUg1arD60xOYe0kaLh0e\nh39U1OHI2Q48fG02UowCrstLRIWlHf860oD3ymqh4jlIzNMvouI5jEo1IN8chzHpxqCzvt0SQ02r\nA+/tr8WtEzN6ba/EdmMlZgKUmYsyyUOZYm9IDwMyCWrUt7uQZvIdZdbhFHEqjGc2APBfo4bhmlxP\n/xBjwPbKRvx5xyn8z+RMDDNo8NGRBjQ6eTw25QJo1TwmDI/D/1dqwZbvziLVKODha7O9hYnjOIw3\nm3BJhhHNNs+4fZ7zjPhyuCV8V9uOr0824519FlyUovdeXqNr5jhjDNWtDpxu8VzzKsWgwTW5iYNi\ntBwhZGiSNc9mx44dsFgsmD9/PhhjOHLkCEaPDn7dsVjavn07/lrjmbsxcXi8d71LlPB/d55GZoIu\n4n0Xn//QhI+PNuLKrHjsO2PFw9dmI77bpVdcooQKSzvGm02yL+TYXYdLxMHadjTZ3N5rYDk7Py/F\nHKdFZqIWF8Rrz+vrPBFCQhPTPhtRFFFZWYn58+eD4zi88847KCwsDHuYcMtK0OJ0iwMThwPHG21o\nsbux93QrDBoVZo/zMzU4zKaMTEKyQYOtB8/ivqsyfQoN4Lmm1cTh8i/62ZNBo8LlmfHBNySEkBgL\n+pa3srISd91116D8sLThCTqcbnHg26pWbPjmDL6pakW8To3bLzdH7Tpg480mPPGTXKSZBEV+5jhl\nkk+JuSiTPJQp9mT12Yii6P3ZYrFAksL70baRkpmgxfFGG0412fGbqzORmRC+PhpCCCHyBe2z2bFj\nBz799FPU19fjiiuuwK5du7B48eKQR1GUl5dj8+bNAID58+dj3LhxfW7/+uuvo7q6GpIk4b777kN6\nenpI+9m+fTuMWaPw2Ec/4BdjUnBVgMmdhBBCzolZn821116L3NxcVFRUQK1W46mnnvK+8MslSRKK\ni4uxbNkyAMCqVaswduzYPict3nPPPQCAAwcOYOvWrbjnnntC3g/HcXjyp7nQR+FDrwghhAQm61U4\nKysLM2fOxLRp00IuNICn6c1sNkMQBAiCgPT0dFgsFln31el0UKvV/d6PQUEfdKTENlrKJJ8Sc1Em\neShT7AU9s9mxYwf27t0Lp9Ppsz7QVZ/Ly8tRUlLis27OnDkwGo3eqw4YDAZYrVaYzeagAT/77DPM\nnDkTANDW1hbSfvaXlSG/s7mv6w87IYbLlUcrY3p8f8tdlJJHycv09xu8y5VHKxWVR6nPp0hOMg3a\nZ/PII49gwYIFMBp9JwSOGTNG9kGqq6uxZcsWLFq0CIwxbNiwAXPmzEFGRt+fHbNnzx7U1tbixhtv\nDHk/cj7PhhBCiK+Y9dnMmzcPx44dQ05ODrrqUqjNUhkZGaipqfEuWyyWoIXm2LFjOHToEBYuXDig\n/RBCCIm9oH02f/3rX3Hq1Cns3bsXpaWlKC0txd69e0M7CM9j7ty5KCwsxNNPP4158+b53L5z506U\nlpb6rPvzn/+MyspKrFixAhs3bpS1H6VTYhstZZJPibkokzyUKfaCntlMnjwZU6dOHfAZRH5+PvLz\n8wMeo6eXX3455P0QQghRpqB9NnfffTc6OjoG3UcMUJ8NIYSELmZ9Nm+88UbYD0oIIeT80q/Zjj2H\nQRN5lNhGS5nkU2IuyiQPZYq9oMWmuLjYZ1mSJPzpT3+KWCBCCCFDT9BiU1FR4XsHnofNZotYoKFM\niZ/KR5nkU2IuyiQPZYq9gH02+/btw759+1BbW4uNGzd659i0tLTA4XBELSAhhJDBL+CZTVJSEvLy\n8qDT6ZCbm4u8vDzk5eXhxz/+sfdCmCQ0SmyjpUzyKTEXZZKHMsVewDObnJwc5OTkwG63Y8qUKVGM\nRAghZKgJOs9msKJ5NoQQErpIzbOhD3ohhBAScUGLTXV1NV577TU8++yzePbZZ/HMM8/gsccei0a2\nIUeJbbSUST4l5qJM8lCm2AtabF544QUMHz4cycnJuPzyyzFs2DBcc8010chGCCFkiAhabARBwI03\n3oiLL74YSUlJuPvuu7Fnz55oZBtylDiunjLJp8RclEkeyhR7QYuNXq8HAIwYMQK7du2C2+1GQ0ND\nxIMRQggZOoIWm6lTp8JqtSInJwcAsHjxYtxwww2RzjUkKbGNljLJp8RclEkeyhR7sj7Ppst9990X\n0TCEEEKGJppnQwghxCum82x27NiBv//97wAAxhgOHz4c9iCEEEKGrqDFpqioCJWVld72RY7j8M47\n70Q82FCkxDZayiSfEnNRJnkoU+wFLTaVlZW46667oNVqo5GHEELIECSrGU0URe/PFosFkiRFLNBQ\npsRx9ZRJPiXmokzyUKbYCzoa7YYbbkBhYSHq6+tRVFSEXbt2YfHixdHIRgghZIgIemZz7bXX4u67\n78bMmTNhNpuxYsWK864ih4sS22gpk3xKzEWZ5KFMsRf0zAYAsrKykJWVFekshBBChqig82zOnj2L\n1NTUAR+ovLwcmzdvBgDMnz8f48aN63P7119/HdXV1ZAkCffddx/S09MBAOvXr0d1dTUEQcB1110X\n8IPdIjXPJlGnglNk6HBRvxUhZOiJ1DyboGc2zz33HNasWTOgg0iShOLiYu/HSa9atQpjx44Fx3EB\n73PPPfcAAA4cOICtW7d6lzmOw5IlS5CSkjKgTHLEa1XQqnm02N1wiwypJg0SdBo0drio2BBCSAhk\nXfV5oCwWC8xmMwRBgCAISE9Ph8VikXVfnU4Htdq3JkbrogeJOjWS9BqMSNQhO1GHBJ0GAKDX9O8z\n55TYRkuZ5FNiLsokD2WKvaBnNtdffz02bdqEX/7ylz7rTSaT3+3Ly8tRUlLis27OnDkwGo0oKioC\nABgMBlitVpjN5qABP/vsM8ycOdO7rNfr8eKLL8JkMuH2229HRkZGwPvuLytDfudghq4/7ASZyz8c\nOoA6zomCggJwHIdvdv0HAFBQUACdmsd3FeVwiZLs/ZWVlaHyaGVI20djuYtS8ih5mf5+g3e58mil\novIo9fkUycFfQfts7r///t534ji8/PLLsg9SXV2NLVu2YNGiRWCMYcOGDZgzZ06fhQIA9uzZg9ra\nWtx44429bjtx4gSKi4uxdOlSv/cdaJ/NBXECTNrAtbim1Q6rk5rSCCFDS8z6bNavXz/gg2RkZKCm\npsa7bLFYghaaY8eO4dChQ1i4cKHf2zUaTa/mtXDRqrg+Cw0A6DQqKjaEECJT/zofQj0Iz2Pu3Lko\nLCzE008/jXnz5vncvnPnTpSWlvqs+/Of/4zKykqsWLECGzdu9K5ft24dli9fjrfffhu33nprRPIm\n6IIXMb069IdOiW20lEk+JeaiTPJQptjr16mBw+EI+Vpp+fn5yM/P93tb98/M6RKome6hhx4K6bj9\nYRBUQbfRqnmoecBNJzeEEBJU0LfnxcXFPsuSJOH555+PWKBYE1QcBFXwsxaO46BXBy9K3SnxyguU\nSb6B5OIBaHgOgQf7948SHyvKJI8SM0VS0DObiooKn2Yvnudhs9kiGiqWDCEMa9ZreFidYvANyZDH\nAVDzgIbnoVFxUKs4qDkOGhUPtYrzFBqOgygx2F0iHKIEm0uC3S1BVPjHF3IAOM5TLFU8B3XnF89x\nUHHw/l4SGESp6wsQGYNbYpAYoPBfkURBwGKzb98+7Nu3D7W1tdi4caN3bktLSwscDkfUAkabVsZZ\nTRedRgXAJXv7srIyxb2bGaqZul4g1bznRb/rRZLn4V3u+gIDXKIEp8Q830XPd7fk+yJZvn8/Lp2Q\nD63KU1A0Kh4anvP+rOKDn7eoeA5GrRrGzmXGGBxuCQ63p/DY3BJcIpP94hyuv5+K8zz3BXVngez2\nGKm7HieZvvrqKxQUFHiXJXauCEkMECXPb9d9TnfXj31N9AY8j1fn3SF1viZ1L2YMDIzB8wUGl8jg\nFBn2lpVh/Hj/zfixosT/vUgKWGySkpKQl5eH/fv3Izc317teEARccsklUQkXC3qN/KYxnZqHhgfo\nYgKRJ6g48BzAw1MweK5zmTv3DttbQLq9UMrev5r3FoAubonB6ZYgSgwqnsNZA4eRwwxh/b04joNO\no4JOo0JCj+M6RU/hcYgSnG4J7jCcHvAAtGrO0+eo4qHlOWjUvKym434fk+PAqziE8K8VdjV6ICtB\nC6dbgqvbmwpnCIWdDEzQeTb/+te/MGPGjGjlCZv+zLPR8Bxyk/Uh3Yfm20SWQc0jxajpPIs8v7m6\nFZ+uF0sOAN/ZlMVzAAcOHOc5a+DAeW9X8Z4zFkHFBT17OJ9IzFNwXJ1FyCmeK/Lna/NfzObZDMZC\nEwqDmoPdzSChf5eh0appvk0kqDlgmEGDBL0m1lEUQ6PioVEBBlDhDRee46BTc9D5mcrg7jwDcosM\nLonBLUmd6zxf4fivP9d8CG//F2PMZ5TrUCl4kZkVOYgYtWoYBeBsh6tfc2f8PUkDUWIbrRIznTry\nHaZOvjykZrBo6NkXoQSUSZ7+ZPIMhFABft7vMNZZgETPIAiX5GludXWO9uA5DqrO5l6uq/mX61rv\nWbd3z7f48ZVXetf1JHX2T3V9Z8zTH9V9WWTn+qmkztu5Ps5wu7J51nuKG9dZ5Lr6OQ+cCu2xlf14\nRma3g4fAczAIKnS4RGj70VSjVfPgMHjffSipRUWv5pBiFFDHHIorNIR0x3Fc5zSJAexEdEPTR19Z\nV78kwj5gPjaC9tkMVnL7bHKSdBBUPJyi1O9O0lNNNtiVPn61Bw3PwRyvPVcomaejVJIYGmwu2MPR\nGy0rB2AUVDBqVDAIKupPICTGSktLY9NnM5TxHLwFZiCjcXQaHnZxcM23STcJAZsADYIKzXY3Gtpd\nYWmX7knDczAJKhgFFfQangoMIeeBqFwbTam0qvC8yMmdm6OUayEl69XeS/J89dVXvW7nOA5Jeg2y\nE3Uw9jFowjMrvueXZwKjTsXBqOERr1UhWa9GikGDDJOAzHgtcpP1SDUJAc9k/GVSAiXmokzyUKbY\nO6/PbLT9GBDgdz8hTu6MJZ2aQ7JB3ggvQc1jeIIOrXY3OlyiZ2a8n1nxhBASzHndZ5Ni1CA5DENr\nGWM41mhT/GVHeACZibqQRtARQs4vkeqzOa9fdbRhGvHEcf7H6StNilEzKHISQoae8/qVp69hh6HS\nyZgQGqzPRq/mkBmvRYpRA6OG9/njcJ1f/e1mMmp4JPo5i1Niu7ESMwHKzEWZ5KFMsXfe9tnwHKAJ\n0wABQP4ggWS9GiqeQ2O7C93Hr8VrVUgzCeA5zjNDXK/pnCQmeSd9dc09sblEdLhEtDvEPodcCyoO\nejUPrZoP+smjhBASSedtn41ezSErMbTroPXFJUo42WxH16Pp70FN0qmRahIAAE5RQkO7E21OCcMM\naiQbhH4d1+n2XEKDdc6T6Tq+VhPZiysSQoYmmmcTZuF+IdaoeOR1u4inwy2hscOF9s5LQsdrVd5C\n03V8c7wODrc0oFFxgppH/8oUIYREz3n71jcSHeVdl7vnOQ56jQrDE3QYHicgUadCuknw20YbruHX\n/aXEdmMlZgKUmYsyyUOZYu+8PLMRVBzidNH51Y1aNYzUX0IIOc+dl302GSYB8VEqNoQQMpjQPJsw\n0ak5xGnp80AIISSazrtik6zXxOwSK0pso6VM8ikxF2WShzLF3pAuNj373nVqjuabEEJIDEStz6a8\nvBybN28GAMyfPx/jxo3rc/v33nsPR44cAc/zuPfee5Genh7SfrZv346MC8egrdtHNptNQtQGBhBC\nyGA0qOfZSJKE4uJiLFu2DACwatUqjB07ts/mrAULFgAADh8+jJKSEtx7770h70enVnmLjU4dvRFo\nhBBCfEWlGc1iscBsNkMQBAiCgPT0dFgsFln3PXr0KIYPH96v/XSfS5OoG/jVnQdKiW20lEk+Jeai\nTPJQptgL+1v98vJylJSU+KybM2cOjEYjioqKAAAGgwFWqxVms7nPfS1fvhytra1YuXIlAKCtrS2k\n/ezb8w3SLs6HRsWhYu83YExCQUEBgHN/6GguV1RUxPT4/pa7KCWPkpfp7zd4lysqKhSVR6nPp67l\nSIhKn011dTW2bNmCRYsWgTGGDRs2YM6cOcjIyAh638rKShQXF+Oxxx4LaT/bt2/HxIkTcarZhjit\nGklh+NwaQggZ6gb1PJuMjAzU1NR4ly0Wi6xCAwCJiYkQRbHf+zFqVIinEWiEEBJTUSk2PM9j7ty5\nKCwsxNNPP4158+b53L5z506Ulpb6rFu7di1WrlyJ1157DXfffbes/fiTqNd4L80fa0pso6VM8ikx\nF2WShzLFXtTe8ufn5yM/P9/vbZMnT+61bsmSJSHvxx+lFBpCCDmfDelro02cODHWMQghZFAZ1H02\nhBBCzm9UbKJIiW20lEk+JeaiTPJQptijYkMIISTiqM+GEEKIF/XZEEIIGbSo2ESREttoKZN8SsxF\nmeShTLFHxYYQQkjEUZ8NIYQQL+qzIYQQMmhRsYkiJbbRUib5lJiLMslDmWKPig0hhJCIoz4bQggh\nXtRnQwghZNCiYhNFSmyjpUzyKTEXZZKHMsUeFRtCCCERR302hBBCvKjPhhBCyKBFxSaKlNhGS5nk\nU2IuyiQPZYo9KjaEEEIijvpsCCGEeFGfDSGEkEGLik0UKbGNljLJp8RclEkeyhR7VGwIIYREXNT6\nbMrLy7F582YAwPz58zFu3Lg+t3/vvfdw5MgR8DyPe++9F+np6QCA9evXo7q6GoIg4LrrrsOUKVP8\n3p/6bAghJHSR6rNRh32PfkiShOLiYixbtgwAsGrVKowdOxYcxwW8z4IFCwAAhw8fRklJCe69914A\nAMdxWLJkCVJSUiIfnBBCSFhEpRnNYrHAbDZDEAQIgoD09HRYLBZZ9z169CiGDx/us26wDqBTYhst\nZZJPibkokzyUKfbC3oxWXl6OkpISn3Vz5szBt99+611mjOGqq67CxRdf3Oe+li9fjtbWVqxcuRJx\ncXEAgI0bN+LYsWMwmUy4/fbbkZGR4fe+27dvH+BvQggh56dINKNFpc+muroaW7ZswaJFi8AYw4YN\nGzBnzpyAhaK7yspKFBcX47HHHvNZf+LECRQXF2Pp0qWRik0IISRMotKMlpGRgZqaGu+yxWKRVWgA\nIDExEZIk9Vqv0WigVkely4kQQsgAReXVmud5zJ07F4WFhQCAefPm+dy+c+dOaLVan9Fja9euhdVq\nhVqtxl133eVdv27dOjQ1NUGv1+Puu++ORnxCCCEDNGQvV0MIIUQ5aFInIYSQiBsUnR6hTAgNtG2g\n9ZyrOJkAAAbmSURBVIcOHcKmTZswZswYLFy4UDG5Xn/9dVRXV0OSJNx3333eSa2xzBRoom0sMwGA\ny+XCgw8+iF/84heYMWNGzDPJnXgczUwNDQ14+eWXIYoiRo4cidtvvz2mmTo6OrBmzRrvfY8dO4ai\noiJZmSKZCwC++OILbNu2DSqVCjfddFPQCejRyPTxxx/j888/h06nw6JFi2A2m6OWKdBrZKgT9cEU\nThRF9sQTTzCHw8EcDgd78sknmSRJsrftaz1jjO3fv5/t3r2bbdq0SRG5eu6joqKCvfbaa4rKdOjQ\nIfbqq68qJtOHH37I1qxZw/71r3/FNFOX9evXs7Nnz8rKEq1Ma9euZYcPH1ZEpp77OHHiBHvllVdi\nnqvLI488wkRRZO3t7ezxxx+PeSa73e7N0dLSwp5//vmoZWLM/2tkKPvuovhmtFAmhPrbtqamJuB6\nABg/fjxMJpNicvXch06nkz3qLlqZ/E20jVUmh8OB8vJyXH755bIn+0b6OQWEPvE4kpkkSUJtbS1G\njRqliEw99/HRRx/JPiONZK6uv19mZiYOHjyI0tLSoHMBo5GJMQa32w2XywWj0Yjm5ma43e6oZAL8\nv0b2Z6K+4pvR2traYDQavafYBoMBVqvV72lkoG0ByN6H0nJ99tlnmDlzpmIydZ9oq4RMXS9Uzc3N\nsvJEI5Ner8eLL74YdOJxtDLp9Xo4nU6sWbMGHR0d+K//+i9ceeWVMX+cAMBqtaKhoQEjRowImida\nucaPH48PP/wQbrcb06dPV0Sm2bNnY/Xq1dDr9Whvb0dHRwfi4+MjninQa2So2wODYICAyWRCe3s7\nbr75ZixYsADt7e0BH+RA24ayDyXl2rNnDy644ALZZxHRyLRixQrcf//9ePnll2OeqaOjA4cPH8aE\nCRNkZYnW43TnnXeisLAQN910E95+++2YZzKZTDAYDHjkkUfwhz/8AR988AGcTmfMHycA+OSTT0Ke\nrR7JXLW1tSgtLcWjjz6KP/zhD/jnP/+piMdq0qRJWL58OX73u99BrVbLev0KR6Zw7LuL4s9sQpkQ\nGmhbSZL63EeoTR7RyHXs2DEcOnQopEEL0XisgMATbaOdqbS0FC6XCy+88ALq6uogiiLGjRuHzMzM\nmGXqLpSJx5HOlJKSgubmZiQnJysmkyiKKC0txYoVK2TliUau6upqiKIIwPO6IKfQRDpTd6WlpcjJ\nyYlapi49XyP7M1F/UMyz2b9/v3fUw7x58zB+/HgA/ieDBto20PotW7agrKwMzc3NGDNmjPfq0rHO\n9Zvf/AbDhg0Dz/PIzs7GnXfeGfNM3Sfa3nnnnbKbISOZqcvnn38Oh8Mhu9kjkpl6TjxOTU2Neab6\n+nq8/vrr6OjowOTJk2U3zUYy065du2CxWDBr1ixZWaKV6/3338eRI0cgSRKuvvpq2aMJI5npL3/5\nC6qrq6HT6fDAAw/IbpkJR6ZAr5HB/id7GhTFhhBCyOCm+D4bQgghgx8VG0IIIRFHxYYQQkjEUbEh\nhBAScVRsCImSrVu3ori4uNf64uJiVFdXxyARIdGj+Hk2hAwVHMf5Xd/z850IGYqo2BAiQ11dHZ59\n9llceeWV2L9/P7RaLZYvXw6bzYaNGzeisbERZ8+exaRJk3DzzTd777dx40YcPHgQycnJSEhI8Jlz\ns23bNvznP//BqVOn8OSTTyIvL89721NPPYXbbrvNu27hwoXeqxE4nU68+eabqKqqgiRJGD9+vM8x\nCVEiKjaEyGSxWJCdnY2bbrrJu06v1+O2226DyWSC0+nEAw88gBkzZiApKQm7du3CqVOn8OyzzwIA\nnnvuOaSlpXnvO336dEyfPt3vDPqeZ0Hdl/fv34/W1lasWrUq3L8iIRFDfTaEyJSRkYHJkyf3Ws/z\nPPbu3YtPP/0UGo3Ge1HQw4cP49prrwXP8+B5HmPHju3XpZF6GjVqFKxWK1566SV8/fXXcLlcA94n\nIZFGxYaQATh58iSWL1+OhoYG5OTkID4+3ltQeJ73KS7hulhHfHw8CgsLMXv2bJw8eRJ/+MMfwrJf\nQiKJig0hA1BRUYGJEydi2rRpMBgMqKur8942duxY7Ny5E4wx2O12lJWVyd6v0WhES0sLAODIkSM+\ntzHGwBhDZmYmZs+ejaamJtjt9vD8QoRECPXZECKTv9FkV199NdasWYMDBw5g+PDh+NGPfuRtRrvs\nsstQUVGBRx99FAkJCUhJSQk4Iq2nGTNm4J133sG+fftgNpt97nfmzBn85S9/gUqlgsvlwq233gqd\nTheeX5KQCKELcRJCCIk4akYjhBAScVRsCCGERBwVG0IIIRFHxYYQQkjEUbEhhBAScVRsCCGERBwV\nG0IIIRH3/wOoAKsQ3tsV3AAAAABJRU5ErkJggg==\n" | |
} | |
], | |
"prompt_number": 21 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"treatment_effect('sangre', 'severidad del evento')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"text": [ | |
"<matplotlib.collections.PolyCollection at 0x109b1d490>" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8FOX1/z8zO3tPyJ0kkkASbsrVKqIoUqgKFFpvCMLX\ne0W0avstpdavF1Tki8Va9avVWhXFYG1t4WfB1qpVKyIKWi4hWC4l5U4ukMsmm+x1Zp7fH5tdsslu\ndjfZmX0Szvv12ld2Zp6d+czsZs4855znPAJjjIEgCIIgNERMtQCCIAii/0PGhiAIgtAcMjYEQRCE\n5pCxIQiCIDSHjA1BEAShOWRsCIJIKv/6179SLYF7WlpacOLEiVTL0BUyNkRMHn/8cbz00ksx2338\n8ccoLS3t1bFkWYYoijh69Giv9jN58mSUl5cn9JmrrroKxcXFMBqN+OSTT3p1fF649dZbsXTpUl2O\nxRjDvffeizfffDOhzx0+fBiiKEJVVY2Uxc8f//hHjBgxAkVFRSgtLcUTTzzRpc3hw4cxa9YsFBcX\nY+jQofjFL37RpY3b7ca9996Ls846C8XFxbjgggvCtp88eRLXXnst9u3bp9m58IaUagEE/zzyyCOp\nlpAwgiBAEISEPrNhwwYAQGlpacKfJYCnn34aTU1NeOGFF1ItpcdMmzYNFRUVsNlsOHDgAC699FIU\nFRXh5ptvDrWZN28eZs2ahb/97W9obGzEZZddhtzcXNxxxx2hNj/+8Y+RlZWFo0ePQpIktLW1hR1n\n2LBheOWVVzB//nxs3boVFotFt3NMFdSz0ZmVK1di5MiRGDx4MEpKSvD222+Hbfd6vfjZz36G0tJS\nDB06FA899FDYE9+iRYvw4x//OOwzCxYswMMPPxy27vXXX8c555yDwYMHY968eWhsbAzbvnHjRhQX\nF+Pdd9/FOeecg7POOquLUbnyyitRXFyMtLS0iE/HR48exeWXX478/HxcdNFF2Lp1a5c2GzZswOWX\nX45hw4Zh4MCBuPPOO8POx+PxYNGiRcjPz8fYsWPx2muvxbiCkXnuuecwePBglJWVYfHixZBluUub\nWNckGTDGsHLlSgwfPhwlJSW466674PF4QtufeOIJXHnllWGfeeCBB3DjjTeGrfvrX/+K8ePHo7i4\nGDNmzOjS0yspKcHq1asxZ84cDBo0CGPGjAlzX3m9XhQVFWHdunV4/vnnUVxcjMGDB4ftw+fz4cEH\nH8Tw4cMxePBgzJ49GwcPHuzRedfW1uLxxx/H888/32VbS0sL7rrrLpSWlmLIkCFYsGABTp482aXd\nunXrcO6552LgwIH4r//6L7S2toZtj/W/E+T888+PqCMeBg4cCJvNBgAYPnw4vv3tb+Prr78Oa3P4\n8GFMnz4dAJCdnY0JEyagqqoqtP3IkSP4/PPPsXLlSkhS4Hnebrd3Odb48eMxdepUPPvssz3S2udg\nhG78/e9/Z4WFhez48eOMMcYURWEulyuszY9//GM2bdo01tzczNxuN5s+fTp76qmnQtv/+c9/stzc\nXObz+RhjjDkcDma329nhw4dDbd555x1WWFjI9u/fzxhjbOnSpWz27Nlhx/n000+ZzWZj1157LWtp\naWGMMeZ0OiPqvvXWW9nSpUu7rJ80aRK76667mKIozOFwsJkzZ7LS0tKwNl999VXofE+cOMEKCwvZ\nn/70p9D2Bx54gE2cOJE1NTUxWZbZww8/zARBYEeOHOnmSobz4YcfsqysLFZZWckYY2zDhg3MbDaz\n8vLyhK5JkJKSEvbJJ5/EffyOPPPMM2zMmDGsurqaKYrCbr31VnbPPfeEttfU1DCr1crq6uoYY4Hf\nQHFxMdu0aVOozbZt21h6ejrbsmULY4yxVatWsXHjxjFVVcM0XnzxxayqqooxxthNN93Ebrzxxi56\non13jDG2ePFidsUVV7Dm5mamqir79a9/zUpLS7v8JuNh5cqVbNasWRG3XXPNNezmm29mXq+XybLM\n7rvvPnbRRReFth86dIgJgsAefPBB5vf7mdPpZJMnT2aLFy8OtYnnfyfIDTfcwNauXZvwOURi7Nix\n7OWXXw5b9//+3/9jF154IXvhhRfY4sWL2ZQpU0LfJ2OM/e53v2Pf+ta32NVXX81KS0vZxIkT2Z//\n/OeI+//qq6/YsGHDkqKVd8jY6EhlZSXLyMhgb7zxBquvr++yXVEUZrPZ2NatW0PrvvzySzZixIiw\nduPHj2fvvPMOY4yxV155hc2YMSNs+4wZM9jKlStDy36/n9ntdlZdXR1a9+mnn7Ls7Gzm9Xpj6r71\n1lvZww8/HLbu8OHDzGAwhAwVY4x9/PHHrKSkJOp+VFVlc+fOZcuWLQutKy0tZe+9915oWZblhI3N\nrbfeyu67776wdZMnTw4zNvFckyC9MTYjR45kb7/9dmi5urqaWSyWsDZXXXUVe+aZZxhjgZvoyJEj\nw7bfeeed7K677uqy3y+//DKqxldffZVNmTKli55I3x1jge/CbrezXbt2ha0fN25c2MNAvFx//fXs\nJz/5SZf1tbW1TBRF5nA4Quv8fj/Lzc1lX3/9NWPstLFRFCXU5v3332dDhgwJLcf639GCv/71r2zs\n2LHM4/GErf/73//OLrnkEnb77bezyy67jN14441h57dy5UpWUlIS+j/++uuvWVpaGvviiy+6HKOh\noYEJgsDa2tq0PRkOIDeajowdOxaffPIJtm7divPPPx9TpkxBRUVFaHtDQwPcbjeuv/56lJaWorS0\nFPPnz4fD4Qjbzx133IE33ngDAFBeXh7mKwaAY8eO4dlnnw3tY/jw4bBYLF1cMTabDSaTqUfnUltb\ni+zsbKSnp4fWsQhl9v71r3/hhhtuwMUXX4ypU6di69atYS6u2trasKSCSPuIRV1dXczEhHivSW85\nduwYlixZEjrOxRdfDKvVipqamlCbO+64I5S8EO37W7t2bWgfpaWlaGxsxPHjx6MeV5KkqAH2SPGn\nU6dOweVyYdiwYWHrhw8f3qNr4nQ6Q+6njhw5cgTZ2dnIyMgI0zpkyJBuj1NUVIRTp06FlmP97ySb\nI0eOYPHixXj77bdhNptD6//zn/9gwYIFWLNmDVatWoWPP/4YAwcOxI9+9KNQm/z8fBQUFODCCy8E\nAFxwwQW4/PLL8c4773Q5TtC91tLSotm58AIZG505//zz8dJLL+Hw4cOYN28errnmmtC23NxcpKen\n4x//+AcOHTqEQ4cO4ciRI6irqwvbxw033ICNGzfiyy+/RFVVFa666qqw7UOHDsWKFStC+zh06BDq\n6+tDP/5kUFRUhMbGRjidztA6RVHC2siyjGnTpmHWrFn48ssv8dlnn+E73/lOmEEpKioKixN03ke8\nWjrHGjrvR49rEjzOmjVrwo7T2NiIwsLCUJuZM2eioaEBn332Gd577z3ccsstXfbxwx/+MGwfJ0+e\nxNy5c3ukKZIBz83NhdVq7ZINtW/fPgwZMiThY5SUlHT5nQLA4MGD0djYiIaGhtA6r9eLQ4cOdTmO\n3+8PvT9w4ECX7d397yST2tpaXH311XjttdcwatSosG27du3CoEGDUFZWFlo3efJk7Nq1K7Q8ceJE\nVFRUoL6+PrROVdWID3Z1dXUwm80oKCjQ4Ez4goyNjvj9/lBuvaqq8Pl8YU+DgiBg8eLFWLhwYagd\nY6zLU09mZiauuuoqLFiwALfccksoCBlk8eLFWLZsWVhgs6mpqce6I92sBg0ahEsuuQSPPvooGGM4\nfPgwHnroobA2brcbjY2NGDNmDABg/fr1ePfdd8NuKgsWLMAvfvELtLa2oq2tDYsWLUpY34IFC1Be\nXo4DBw5AVVX8+te/xj//+c+wNolek570sADgpz/9KX7yk59g//79oXWde6YGgwG33XYbbr75Zkyf\nPh25ublh2++++268/PLL+PDDD+PS2h1ZWVnYuXMngEAyRrC3IIoiFi1ahCVLlsDhcEBVVTz99NNo\na2vD9773vYSPc/XVV2PTpk1d1hcUFODKK6/EvffeC4/HA1mW8fOf/xzDhw/HhAkTwtreeeed8Hq9\naGxsxOOPP47bbrsttC3W/05HbrjhBqxduzbhcwACN//vf//7ePbZZ3HppZd22X7hhRfi8OHDWLNm\nDVRVRV1dHZ577jlcdtlloTajRo3C7Nmz8bOf/QyKouDAgQP49NNPuzwUAsBnn32G2bNn90hrnyN1\nHrwzjwMHDrDRo0ezoqIiVlRUxGbPns327dsX1kZRFPbMM8+wUaNGseLiYlZWVsaeeOKJLvvatGkT\nE0WR/fvf/454rPfff59ddNFFrKioiJWUlLCrrroqbPunn37KiouL49IdLch84MABduGFF7KcnBw2\nefJk9vTTT3dJEPjNb37DCgoKWFlZGbv77rvZz3/+c3bTTTeFtrtcLjZ//nyWkZHBRo8ezX7/+98z\nURQTitkwxtj//u//suzsbFZSUsKWLl3aJWbDWOxrEqSkpITl5eWxoqKiqNe3O9asWcPOPfdcVlxc\nzEpKSsISBIIEY14fffRRxH1s3bqVTZs2LbSPyZMnh8UOOsds3njjDXbppZd22c/+/fvZmDFjWGFh\nIRs7dmwo1scYY16vl91///2srKyMFRUVsVmzZrEDBw4kfL5BJk6cyDZs2NBlfXNzM7vjjjvYkCFD\nWHFxMZs/fz6rra0NbT906BATRZGVl5ezUaNGsYyMDLZw4UImy3KoTTz/O0HOP/989vzzz/foHObP\nn8/sdnvoOEVFRWzOnDlhbT777DN2ySWXsOzsbFZUVMSWLFkSStgJ4nA42I033sgGDRrESktLuyQZ\nMBaIT1544YVhsbj+jMAYzWdDEETvOXjwIL7//e9jw4YNXWJBRFfuu+8+WK1WPP7446mWogvkRiMI\nIimUlZXhnXfe6dODOvVix44dSEtLO2MMDQBQz4YgCILQHOrZEARBEJpDxoYgCILQnH5biLO/VO0l\nCILQm46p3Mmi3xobADjvvPNSLYEgCKJPsWPHDk32S240Hdm8eXOqJXSBNMUPj7pIU3yQptRDxoYg\nCILQnH6b+vzJJ5+QG40gCCJBduzYQTGbMw1ZZfArKpLxOGCWRBhEmn2SIIjUQG40HYnHR+v0yKhp\n8eJwkxuHGt041uzF8Zbev9z+yNWUefQb86gJ4FMXaYoP0pR6qGfDGa0+BU5f4mX2Y+FX+qW3lCCI\nPgLFbDijusWDVl/kSbB6Q7ZVQq69ZxOlEQRx5qBVzIbcaJyhamT6/UryDRhBEES8kLHRkXh8tFp1\nNKO50Xj0G/OoCeBTF2mKD9KUesjYcIZWTk2fVl0mgiCIOKCYDWccbnLDp1EwvzTLAqOBni8IgogO\nxWzOELS0/ZSRRhBEqiBjoyPx+Gi1tAdyBFcaj35jHjUBfOoiTfFBmlIPGRuOYIxpFrMBIhsbgiAI\nPaCYDUcoKsPBRje0+kIyLQYMTDNrtHeCIPoDFLM5A9Da6muVeEAQBBELMjY6EstHqzKmqcGJlCDA\no9+YR00An7pIU3yQptRDxoYjtHZoyiqD2j+9pgRBcA7FbDjC41dwtNmr6TGGZFpglugZgyCIyFDM\n5gxAj2QxmWqkEQSRAsjY6AgPPtrO6c88aOoMj5oAPnWRpvggTamHjA1H6BFP8dNYG+IMgcaV8QXF\nbDjC6ZFR0+rT9BjpJgMKB9BYG6L/U9PiQZbNBAvFKBOCYjZnAPr0bChmQ/R/XD4FTp8Kh9ufailE\nO2RsdCSWj1aPLmbnsTY8+o151ATwqYs0Raax3ci0eBV4ZZULTZ3hUZOWkLHhCD1czCojXzbRv3H5\nFLj8p3vw1LvhA4rZcESDy4cGl6z5cYozzLAaDZofhyBSwXGHBy75tLERAQzOtMBEsZu4oJjNGYBe\nZl+mGmlEP6XVK4cZGgBQATg81LtJNWRsdCSe2mh60DH9mUe/MY+aAD51kaZwGqO4zD7/egd8nA1o\n5vG70xIyNhyhW8+GMtKIfojTI8MjR/4nUlSGZrf2LmoiOhSz4YiaFi+cPkXz49iNIgZlWDQ/DsE3\nrL3KOGOnK44zBkiiAIMopFpeQjDGcMzhgacbF7EIYEiWBUYDPWN3h1YxGynpeyR6jLYTDJyGqgic\nWbh9Ck61+aDitGFRgbBc+46/CJskYlCGGYLQdwxOi0fu1tAAgdhNs0dGrt2kjygiDN1MfGVlJR55\n5BE88sgj+Oabb3rV3u/34+6778YHH3yglVxNiB2z0UeHX2EIdmh59BvzqAngU1csTS6fguoWLzwK\ng09h8KsMCgsYHYbTr7DPyCqaPT13Oel9nRhjcMTQW1FRAQBodsvcpP7z+HvSEl16NqqqYu3atVi6\ndCkAYMWKFRg9enTUJ6dY7T/66COUlZX1qSeveNDLo8kQMDgmqX9dPyKcVq+MWmegR5Mo9W1+WI2G\nPjEdRbNHhjfODEsFQLPHjxwb9W70RpdfUm1tLQoLC2EymWAymZCfn4/a2toetfd6vaisrMSECRN0\nuzkni8mTJ3e7Xc/TCT7dxdKUCnjUBPCpK5omp0dGTQ8NDRBwOZ1q9fXof0zP66QyhqY4Av/nnntu\n6L3DJUPhoHfD4+9JS5Les6msrMSGDRvC1s2ZMwd2ux3l5eUAAJvNBqfTicLCwoj7aG1tjdr+/fff\nx8yZM+FwOGJq2bx5c+gLDXZZeV3+4osv0OA34Owx4wCc7vYH/0mSvfzVtm0wqn5uzp+Wk7fc7PHj\n719sA2Os17+X6ZdcgEyrkavz67g8+vwL4VdZQuenAPhs6zaYVG/K9fO6rAW6ZKNVV1dj/fr1WLhw\nIRhjWLVqFebMmYOCgoKE2g8YMADPP/88/ud//gcbN26Ex+PBzJkzI+6Dx2y0jsYvEocaXfDrlJWc\nY5OQYzPF1JQKeNQE8KmrsyaH24+TbckbwCgCKE5wdle9rpOiMhxxuCHH8T9TUVER1ruRBGBIljWl\nWXc8/p6APp6NVlBQgJqamtBybW1tVEPTXfsdO3bA7/fjueeew8mTJ6EoCsaMGYOioiJN9UdDVhla\nvDLAAEEAMi1Sr+JIeg7s71yQk+j7NLn8OOVK7kj5oDuNx+y0Fo8cl6GJhMyAFq+MLKsxuaKIqOg2\nzmbXrl1Yt24dAGDu3LkYN25caNuWLVtgNpvDeiLdtQeAjRs3wuv1YsaMGRGP15uejU9RQ/GTaE90\nKmOobvaGlcYo7UUOP2MMVQ1unZKfAaskoDjTqtPRCK2pb/OhUcNBiwPtRmRydGNWVIbDjW70ZlSa\nURQwJMsCkTMjmmr6dM8GAMaPH4/x48dH3DZp0qSE2gPA1KlTkyUthMoYGtr8aOqQRplhNiDXbgrr\nbjPGUOf0dqnBpKgMPa1vqXe8kpf0z76GojIojEFVGVQWWFYZgyAIsJsMKXHLnGr1hf1mtYC37DSH\nx98rQwMExps1e6h3oxf9elBno9uf0CQxrb6u5S6avQq8sgc5NmPIjdDqk+H0de2/x7qBd+ej1fvW\nL6uBG+WWL7/gzm8cy5etqAyKyiC3/1VZ+9gRMKhq+6DF4DrGkpLlpzBg565dGDt2XNTvygAgzWxA\nulmCzaR9VW3GGD7+chuGjByt+bEScadpHYuQVQZHgtXRO8dsgjjcMjIsUkp6N7zGbLSiXxub+iQF\nSj0Kwwln7Omae5NOGSwXoheBsTb810jzySpafTLcfhWKGhiUqDL9jTMAyIra7XEVBB5Omr0KzAYB\nA8wS7GYDTL0sj8JY4LxlpYORZQweWUWT248hvdp7/AQHe6baneZw975XE8SvMjg9MjKod6M5/bo2\nWtrgs3U9ZjDDqyd4ZRVHHJ4kK+oeSRSQZZUwwCxxVQtLZQytXgVOr4w2vdLzNMRuFEOGR0DAZaqw\ngNFU1UA1B7W9jIzS/lduNy4yY4GKD6k+iXZ6kp2WTPyKiiNNnh6PH4qEySBgSKaFuwSIVNHnYzZn\nAr3p2aTC5ssqw6k2PxxuGZk9NDrJ1O2RVbR6FbR4ZV0z87Smza+ize+D2Hq6R9ZXTy/V2WlNbn9S\nDQ0A+BSGFurdaA4ZmyQSK524Ox9tquL1QV920OhkWAwR/dfBYHgwTiK3P30n00YGdxXNv55qeqtL\niz5aKq5VLHeaVrEIn6yixdMzB1qs6+TwyBjQy6ELiUIxG6LH8FACozf4VYZ6HaalJvo+qchO06JX\nE8SrBFy36Ra6JWoFxWx6QUW1E18dbQktX1qagatHD+zRvlq9MqrjSEIgCF7QcyoCPWKaFoOAwVk0\n9kyrmA0fSfN9kKMOD96uqMN5g9IxacgAZFol7Kpp7XHvpn+afKI/09upCDrCWMA961dU+GQVHr8C\nl09Bm1eG0yOjwaX9g5hHCWSmEdpAfcYe0OqVserrE5h/bj7OPSsdACBAwObDDvhVFjXI3n3MJjXW\nhsf4CI+aAD51pVpTfZsfvk4p9BUVuzCufUD26Z/16Yy60MygDKHsu47PaFr8J8R7nZo8ft1caamK\n2QSvPWt/D9YeT+z0PSQbMjZx4pNVKO1f0uptNThv0ICQoQGATKsEh1uG2sNvq4+He4gzFBWAo1PQ\n3uGR0eLVfnpzLfDIDK1eGWlm7W6Nwem4BdEAuX1QcqQbfkejEPyM2j54mXVqE/hM+xi0Dm2CnwFO\nT5oXpkWzs+wKxWziYO/JNrz61YlQltbwXBsWTjwrrAfj9MpY/vEhlM8b1aMUykaXH/VJLqJIEETi\nWCUBmRZj6CYPIDSQONg/YxFu6h0NQsB4nDYirL2aRfB9R3i7Abce3UfjbFJBfZsPa7bX4O5JRRiW\na4vaLs1kgE9hcPlVZPQgxsjPsD2COLNxywzuVkrWSTaUINANPlnFqq+rMX1ETreGBgAEQUCmRcKp\nNm/UNt3NOZ6q/mVwUime4FETwKcu0hQfpCn1xOzZbNu2DRMmTAgtq6qKN954Az/4wQ80FZYqqupd\n+Nu+BijtJVOKM82YWpYZ12ezbFKP67GlKkGAIAhCD2Iam3fffTfM2IiiiGPHjmkqKlVsPdqM9d+c\nwpyxA5FllSC0z+YX7ziCTIsRp7oxNt1lnqTK1vCWXQXwqQngUxdpig/SlHqiGpvjx4/j+PHjcDqd\n+Oqrr8Da5+xobm5GfX29nhp7zP99fjTutrIa6Mn85NJiFKSb4/5cRzOUaZXQ0OOeTY8+RhAE0SeI\namxqamqwfft2tLa2Yvv27aH1RqMR99xzjy7iesvsc3ITaj8owwxbArOfpZtE5KWdNkw5NgknWnxQ\nGYtYX6z7+WxonE0QHjUBfOoiTfFBmlJPVGNzwQUX4IILLsBvf/tb3HXXXXpqShrDYwT1e4MkCshL\nM0PqkP6cYzPiX3VtkBUGk5RYCQ/q2RAE0Z+hcTY9ZFC6CfZOA7++POzAqn9W44WrRiY8U+Mxhxtu\nuV9+FQRB9CG0GmdDqc89IMsidTE0ADAwzQiHW+5RfbT+afIJgiACxDQ2hw4d6rJu7969mojhmcJ0\nE0qyLCjJsiDXHrlCQKbVCI+swuWPXKqju3E2qZqPksdcfx41AXzqIk3xQZpST0xj89prr3VZ94c/\n/EETMbxiEAC7KTCXvMkgRk2FNhtEZFikHpWd6afeTIIgCABxGBtR7NrkTLsx2k2RZ6/sjEEUkGmV\ncCpKqYvuxtmkahpkHrNheNQE8KmLNMUHaUo9MY2NwWAIG1dTU1MT0QD1Z+JNh5YMwZI1ifVsGEvu\n9MoEQRC8EdNqzJ07F48//jj+8Ic/4He/+x2WL1+OefPm6aGNCwQEejbxIIkCsqwSGqK40aLFbFKZ\n9syj35hHTQCfukhTfJCm1BOzXM2oUaPw8MMPY+fOnRAEAY899hgGDuzZ1Md9EatRjDoZWmdEQUC2\nzYi6Vl+o4kI8UKeGIIj+Do2ziUGe3YisBOanWf/NSWw+0oxfzBwKoyE+d6NPUXG4Sdv51QmCIOIh\npeNsTp48iZ07d4aWPZ4z58ZoT6B8DQDk2hMfa9M/zT1BEMRpYhqbTZs24bnnnsPvf/97AIFg9hNP\nPKG5sFSSbhKRYTYgyyLBJCWWDDEwzQSH2x/R2ESL2UTrXDLGcKrVhzpn719tvshjf3j0G/OoCeBT\nF2mKD9KUemLGbD788EM89thjIQMTbxyiM5WVlVi3bh0AYN68eRgzZkyP2jc0NOCFF16AoigYOnQo\nbrnllh7picZAuxGZPZjWOUiO1Yg2nwK3X4lYZSASne2Syhgqa1rxwf4GtHqVhOusdcavMOTajfjv\nyYN7tR+CIIieEvNuaDAYYDSevvl6PB74fIlNmaqqKtauXYulS5cCAFasWIHRo0dHNVyR2geNzZtv\nvon58+dj5MiRMY8rCgm4qAQgz9Y7QwMAJknEgPaBnblp4VMVdDfOJsjOE068v78BkgjMOjsXYwvs\nPTbwQZpcfvxq05GI23jM9edRE8CnLtIUH6Qp9cQ0NsOHD8dbb70Fl8uFbdu24d13343rptmR2tpa\nFBYWwmQyAQDy8/ND6+JtX1NTg/z8fNTV1cVlaABgWI52VZ+jERrY2eZHvOkJwVk6a1q8+OOuOtx4\nXgFG5/feyATJsEpo86nwyWrCbkGCIIhkENPY3HDDDfj444+Rl5eHzz//HNOnT+/W2FRWVmLDhg1h\n6+bMmQO73Y7y8nIAgM1mg9PpjGpsWltbI7a3Wq3w+Xx46qmn4HK58N3vfhcTJ06MqqXj/DHBeInW\nyxMnXYxMixHb91ZBOOEN275792788Ic/7PJ5xgL+26MuEYMzszGmIC3kzw0+/fRmWRQE2A0Kvtix\nG9Mmjg/bHmyTzOP1drmztlTrCS5XHajCdXOv40ZPx2vEix5ev791a9dh2PBh3Ojh9fekZW9Ll9Tn\n6upqrF+/HgsXLgRjDKtWrcKcOXNQUFCQUPvc3FwsW7YMy5Ytg6qqWLp0KZYtWxbqAXXkk08+wXnn\nnaf1qXWBMYYnNx5Bjk3CHRcWhW2LNnlas9uPujY/vjjswOEmD274VuTr0hte2nIcl5RkYlxhWth6\nHidw4lETwKcu0hQfpCl+dE99VtXk1SEuKChATU1NaLm2tjaqoemuvSRJyM3NhcPhgCRJkKT4AvB6\nIggCcuxbZ6dSAAAgAElEQVRGNLjkLtui9QiDCQLNHhkZFm3OKdduRIOra6yNxx87j5oAPnWRpvgg\nTakn6p3tqaeewv33349nn30Wixcv7tVBRFHEddddh+XLlwMIlMDpyJYtW2A2m0M9ke7a33DDDXj5\n5ZfhcrkwadKkiL2aVJNjNeLAKVfU6aE7E+xaOtwyBmdaNNGUazeiPsGabQRBEMkiqrFpbm4GADQ1\nNSXlQOPHj8f48eMjbps0aVLc7XNzc/HAAw8kRZNW5NqNaPbKkFUGk+G0sYnmRmPt5qbZIyPTqk3P\nJsdmwr6Tri7reezK86gJ4FMXaYoP0pR6ot7ZBg4ciHvuuQctLS1YsmRJ2DZBEPCrX/1Kc3F9lRy7\nEc2e9ioCcRQgCEbNHBq60fKoZ0MQRAqJemf7yU9+gubmZqxcuRI//elPz7g5bHpDnt2IFo8CWVGB\nDuVuosds2ns2bu2MTY7NiAaXv4trj8cnKx41AXzqIk3xQZpST7d3toyMDJx33nnIy8vTS0+/wCoZ\nYDIIcLhlpFtiDxJlDPArKtx+BWnmxGqxxYtJEmE3iWh2y8iy9W7gKkEQRKLENZ8NkRiSoX1gZ6d5\nbbqbz6bFq2CARYoroaCn5NpNXaas5rE+E4+aAD51kab4IE2ph4aTa4AkCsiwSGiIM0bCwODQ0IUW\nJMdGcRuCIFJDVGPzhz/8AQDw5z//WTcx/YWQsenUi+hunI2WY2yCBJIEwsfa8Og35lETwKcu0hQf\npCn1RDU2+/btA4CweWyI+BAEAVlWY9TpoTvDGEOzx69Z2nOQHMpIIwgiRUQ1Nj6fDy+++CLq6uqw\nevVqvP7666HX6tWr9dTYJ8m2SWhyxxezYSwwoDNT856NqYux4dFvzKMmgE9dpCk+SFPqiXp3e+CB\nB/DNN9/g3//+N0pLS/XU1C/IsRlRWdMWVxUBFQE32qAB5m7b9ZZcu7FLggBBEIQeRDU2AwYMwMUX\nX4wvvvgCU6dO1VFS/yDXFhjYKSssNPlZtJhNwI0mI0NjN1qayQBZDaRYW9vH//DoN+ZRE8CnLtIU\nH6Qp9cTMRrvvvvv00NHvyLGZAsYmwvTQnVFCbjRtx78IgoBcW1dXGkEQhNZQ6rNG5NqNaPXK8Mmn\nq2dHitkwxqCqTJdsNKBrkgCPfmMeNQF86iJN8UGaUk9cxmbTpk3405/+BCBwcwxmqhHRMUsibCYD\nmjzd9yJUBrhlFaIgwGLU3vZHSn8mCILQmph3t/LyclRVVYWssCAIeOuttzQX1tcxtI+16RiQj1zx\nGboM6AzSuYoAj35jHjUBfOoiTfFBmlJPTGNTVVWFH/zgBzCbtc2U6m9IooBMi4T61lg9G/1caABV\nESAIIjXE5bdRFCX0vra2NqmzePZXDGKgPlrHgZ2RYzaBqQW0HtAZpPNUAzz6jXnUBPCpizTFB2lK\nPTHvcFdccQWWL1+O+vp6lJeXY+vWrbjzzjv10NbnybYa0RhjXAtjTNOpBTqTZTs9145B1K7oJ0EQ\nREdi3uGmTJmC0tJS7N69G5IkYdmyZRg4cKAe2vo8WTYJB+rdoeVIMRu1vWeTn6bP9NbBum2Nbj/y\n7CYu/cY8agL41BWPJr+i4kiTBz6FQVZV+BUGWWXwKwx+lUFWVPg7LGdbJUwbmgWhhxXI++p10hse\nNWlJXI/TxcXFKC4u1lpLvyPHZsQ2jzNmL6LZI2Nknk03XbntrrQ8uz4GjkgdzR4ZL289AZUxpJsN\nkEQRRoMASRRgNAgwigIkgwijKMBqFDHAIGDzoWZkWCScXzQg1fKJfoQ+vpszlFy7EY4OLqvNmzd3\n6d2oOrvRgPAkAR7nQedRE8Cnru40HW/24OWtJzC5JBPTR2TH3VMpzbbi5a0nMDzXhgE9+F32teuU\nKnjUpCU0qFNDcm0mNLu7ryIQdKNpXYSzIzTWpv9TWdOKF744jmvHDMSMkTkJucRKsqy4aHAG/rir\njqaDJ5IGGRsNybJKcPsVePyBbL5IMRtZUeH0yj16guwpOR2qP/P4ZMWjJoBPXZ01McbwSVUj/rir\nDj+cNAjfGpTeo/3OOjsHda0+7Djh7LUmHiBNqYfcaBpiNIhIt0g41uyFHOUJsc7pg91k0DUzLI+q\nP/dLFJXhj7vqcKTJgyVTBiPb1vNae0aDiBvPK+iVO40gOkI9Gw2RDIHMr9pWHxweBRu3bofDo4S9\nalt9urrQgGCCgA+MMS5z/XnUBPCpK6jJ5VPw4pfH0eKVsfjS3hmaID11p/F8nXiCR01aQsZGQ4JV\nBJo9ctQ2Dh2mFuiM1WiAQRDQ6lNiNya452SrD7/adARFGWYsunBQUmvs9cadRhAdob6xhohCoIqA\nwx0wNpF8tM06zNAZieCsnTz6jXuqSVEZ3H4FblmFx6/C7VfhlhUocUzz0P1+AbdfQZulCFW7T8Ll\nU9DW6SUKAiYUpWPSkAwMyrD06niJYC8agWc/P4rvnZOLS0oyk77/nrjT+tNvSkt41KQlPbrLeb1e\nqpUWJ9nW7ns2etZF60hwqoHSbKvux04Un6ziZJsPDreMZk/gFXzv8MhwemS4ZRWKymCRRFiNBliN\nIqxGERbJAKmX8TBBAGxGEXaTAdlWCcUZZthNBthNBtiMBthNItyyiq+OtuC3W08g3WzARYMzMKF4\nAGztk9QlE5UxOL0Kdte04r199bh1QiFG5tmTfpwgHd1pCyee1ePBnsSZTcy73Nq1azF37tzQsqqq\nePrpp/Hggw9qKqy/kG0z4kRLG4DIefUOj4yhOfrf8IPpzzzm+gc11Tl9+PywA18fbUamVUKmxYgM\ni4QMq4TBmRZkWCRkWiWkmw2wGg0wGQRNb4QVFRU4d1Tka5VmBr53Ti5mnZ2D/adc2HKkGX/ZW4/R\n+XZMGpKB4bm2mNODB/H4VTS5/Whyy2hy+9HoOv2+yRUwsFajiPw0E2bktmlqaILMOjsHT248gh0n\nnDEHe/L8m+IJHjVpSUxjs3v37jBjI4oi3G53N58gOpLTXossGs06zNAZiVy7Cf9pcKGQs6idojIc\nahPx+RfHUN3ixcVDMvA/00qSEvDWA1EQcM5AO84ZaEebT8E/j7Xgnd2n4JFVTChKh9EgBlx9QTdf\n8L18ep0gBOrqZVklZNmMyLZKGJFnCyxbjci0SjAZAl9cRUWjLudlNIi48VsFePkryk4jekbUX8zO\nnTuxc+dO1NXVYfXq1aFslObmZni93oQPVFlZiXXr1gEA5s2bhzFjxvSo/WeffYYPP/wQBoMB119/\nfcz9pJoc+2ljE+kpxpEiN1rhABP+/M1JoDAf7iPNGJpjRZ7dGFfPQFEDbpwWrwy/kpwK4IwBB+pd\n+OJwM3Lsmbi0NAPjC9NgNPBjDRN9CrWbDJg6NAvfLsvEsWYvdp5wwqeoSDNLGJgmhlx+NmO46y+R\nc9bzybgk24oL43Cn8fi0TppST9S7XFZWFsrKyrBr1y6UlpaG1ptMJowdOzahg6iqirVr12Lp0qUA\ngBUrVmD06NFRf6yR2geNyl/+8hf88pe/hMfjwYoVK7BixYqEtOhNXntpmN9sOR5xe32bX7fpBTpS\nkmXFTy4djP80uLH/VBve21cPWWEoybbAHOFm51VUNLfHSVp9CuwmAzIsp5+wk8GgDDN+OKkIgzL6\nVzxQEAQMzrRgcKZ+iQNaMTsBd1qqcfsVWCSRYkycEPUuV1JSgpKSEng8HkydOrVXB6mtrUVhYSFM\npkDhx/z8/NC6eNvX1NSgsLAQRUVF2LNnDxwOB0aMGNErXXqQaTXi3ouL4JVVHDx4EGVlZWHbpw/P\nht2U/CByPJw1wIyTB/fi1gmBJ6xGlx9HHZ6I5XVM7WOGMiwS0s2SpoNQefVl86hLb03xuNNSdZ1a\nPDKqGlw4UO9GVb0LtU4fbjqvABMHZ9B3xwExH6lnzpyZ0A4rKyuxYcOGsHVz5syB3W5HeXk5AMBm\ns8HpdEY1Nq2trVHbjxs3Du+99x5kWcaMGTO61dKx8GVw4jK9lydcOAnDcm2oqKiA90QVRl88DsDp\nAV2j239sweVzdV4OEk/7JgBDUqw3lctVB6q40tMRPY9fkm1FqdmDVzb9G0uuOAeCIKTk/NtkwJRf\nhqoGF7450QS3ImDEwDQMy7EhO60FPpuAv+1rwPlFA1B1oEp3fbGWefw9aWn8BKZDpb3q6mqsX78e\nCxcuBGMMq1atwpw5c1BQUJBQe0EQ8Oabb+JnP/sZAODRRx/FQw89FOoBdeSTTz7Beeedp+l5xYNf\nUXGoyZNqGQSRVPyKiic3HsF3R+bo5k5rdPlxoN6Fqno3DjS44PIpGJZrw/BcK4bl2DAow9wl4+/5\nzccwoSgdF2swBqm/0np0Hy677LKk7zdmz2b//v34+9//DpfLFbb+/vvvj/sgBQUFqKmpCS3X1tZG\nNTTdta+urg5NUc0Yg8/Hf+ViSRQgAKDauUR/orM7zW4yQGUMKguMA2LtfwPLgf9XFYF1isrglVV4\nZBVeueP7rn+D75vcfvhkFjAsuTZMHZqFwgGmmOnk3zsnF29sr8bEwRm9Hm9F9I6YxubFF1/Etdde\ni7y8vNC6RANuoijiuuuuw/LlywEgLJUaALZs2QKz2RzqiURrf9ZZZ2H48OH4xS9+AVVVMWPGjIi9\nGp4QhMBEVX6VcemjJU3xw6OuVGoqybZickkmHvzgPxAAGEQBggBAVSFJBggIpIKLQuCv0P7XIAJm\ngwiLUYRZCmTldfybZZVg7rRugFnCwLT4siU7UpZjRUGaGX/a/A3+a0piiU1aw+PvSUtiGpv8/Pxe\nJwgAwPjx4zF+/PiI2yZNmhR3+2uvvbbXWvRGEgF/cjKECYIrZrcPZO1oBHi7ic46Jwe/2dyKuYrK\nVSr9mUbMmM3HH3+MAQMGYOLEiXppSgq8xGwAoKbFCycVvSSIlPHy1uMYkWfHtKFZqZbCPSmL2ZSX\nl0OWZRiNp0dwC4IQyhQjYkO+YoJILbPPycVvvjyOS4ZkwCRR7yYVxDQ2b775ph46+jXB+l3btm3D\nhAkTwra5/ArqXdHL2WgNby4PgE9NAJ+6SFN81B/ah7KcPGw65MDlw7NTLQcAn9dJS8jE64DRIMJi\nNACKHxajIexl1aAqMEEQXZl9di4+qWqEhwKoKSGucTabNm1CbW0t5s2bB8YY9u/fj7PPPlsPfT2G\np5hNdygqw8FGN6VGE4QOvLGtGoXpZswYmZNqKdyiVcwmZs+mvLwcVVVVoRGmgiDgrbfeSrqQMxWD\nKMBkoJgOQejBd0fm4tP/NMHtp4QdvYlpbKqqqvCDH/yAJktLAsESNp1JpbHhcR50HjUBfOoiTfER\n1JSfbsKofDs+/U9TihXxeZ20JK6YTXDUPhAYza+q5PNMJpQdQxD68d2zc/DZQQfaaDiCrsSM2Wza\ntAn/+Mc/UF9fjwsuuABbt27FnXfeyX0WRV+J2QCA0yOjppX/0jsE0V/4/c5apJkNuHJUXuzGZxgp\nG2czZcoUlJaWYvfu3ZAkCY899hjy8/OTLuRMxkg9G4LQlZkjc7Dy08OYNjQL6WaadVQP4rrLFRcX\nY9asWZg+fToZml7QXcwmVeaGR78xj5oAPnWRpvjorCnbZsT5RQPw8QF9ptWOBI/XSUtimvRNmzZh\n+/btXSosJ1L1megeURBgkgR4ZEqAJgi9mDEiG0/84zAuG5YdcRI4IrnEjNksWbIE8+fPh91uD1s/\natQoTYX1lr4UswGAOqcXzV4KWBKEnqzbfRJgDNeNI49NkJSNs5k7dy4OHjwIp9OJlpYWtLS0wOl0\nJl3ImQ5VoyUI/Zk+PBtfH2tBk9ufain9nph3uN///vc4evQotm/fjh07dmDHjh3Yvn27Htr6HdFi\nNkDqxtrw6DfmURPApy7SFB/RNA2wSLh4SAY+3N+gsyI+r5OWxHRUTpo0CdOmTet2Zk2i95ioZ0MQ\nKeHy4dl4/ONDuGJEDnJsxtgfIHpEzJjN7bffDpfL1eemGOhrMRvGAjXSFMoRIAjd+cueU2jxKLjh\nPHqoTtk4m9deey3pByW6IggCzAYRLpmqMxCE3nxnWKB3M73Vh7w0vqea76v0yHfTOQ2aiI/uYjYA\nYJL0j9vw6DfmURPApy7SFB+xNNlNBny7LBPv6xi74fE6aUlMY7N27dqwZVVV8atf/UozQWcyFLch\niNQxbWgW9tS1odbpTbWUpMEYg6wyuP0KnF4ZjS4/Trb6cKLZgyNNblTVu7DvZBt217Rixwknvj7a\nrJmWmG603bt3Y+7cuaFlURThdrs1E9SfmTx5crfbIxkbgwAkY1ZpWUXEOXN4rHHHoyaAT12kKT7i\n0WQ1GvCdYVn4274G/OCCs5J2bMYYFAb4FRWyyiArDH6VYWDZOTjS5IGsBtb7lYBh8Ckq/Epg2a8y\n+IPLHd8rKnzt7YPv/R2W/e3HkVUGUQgMrZBEAZJBgFEUYDQIkMTAusD7039HDUzaqYcR1djs3LkT\nO3fuRF1dHVavXo1gHkFzczO83v5j+XnCaBAg4LRRyLZKyLEZIQi9tza1Ti9aaNAoQXTLt8uy8NhH\nB/H+vnqIghC4aQdfQWPRwTCc3nb6vV9VQwYluF4QAv/fRjH8pi91vPF3MARGgxj23moUkS4G3psM\nQmhfRkPk9pLYvn+DADHB+0fr0RZNrm1UY5OVlYWysjLs2rULpaWlofUmkwljx47VREx/Z/Pmzd32\nbgI/EkBVgbw0U1JLaBijjOPhcR50HjUBfOoiTfERryazJOKm8wqx92Rb6EnfZmw3EOLpG7kkhvcG\nggakc7vubvg8XictiXo3KykpQUlJCTweD6ZOnaqjpDObNJOEdLMBFqMhqfuVktA7IogzgVH5dozK\nt8duSCREzHE2fZW+Ns5Ga1w+BcdbyP1JEET3pKw2GtE/kFI49TRBEERMY1NdXY1XXnkFTz75JJ58\n8kmsXLkSDzzwgB7a+h2xxtloickgRsxq4zHXn0dNAJ+6SFN8kKbUE9PYPPfccxg0aBCys7MxYcIE\n5OTk4NJLL9VDG5FkTMnIoSYIgugBMY2NyWTC7NmzMWLECGRlZeH222/Htm3b9NDW74g1zkZrIk1j\nwGM2DI+aAD51kab4IE2pJ2ZurdVqBQAMGTIEf/vb3zBmzBg0NCRe0qGyshLr1q0DAMybNw9jxozp\ntv3evXuxZs0ajBo1CjfddFOP90OcJlr6M0EQhNbE7NlMmzYNTqcTJSUlAIA777wTV1xxRUIHUVUV\na9euxcMPP4yHH34Ya9euRawkOL/fj2uuuabX++GJVMZsAMAYwY3Go9+YR00An7pIU3yQptQT13w2\nQe6+++4eHaS2thaFhYUwmQLVVPPz80ProjFu3Djs2bOn1/shTkOzgRIEkSqSN0S9ncrKSmzYsCFs\n3Zw5c2C320Nz4NhsNjidzoSNRGtra0L76ThiP9irSPVyR216H18wSMgbPg7A6aeqoN+Yp+Vzzz2X\nKz0dl4PwoofHZR6/v+A6XvTw/nvSgrgGdW7atAm1tbWYN28eGGPYv38/zj777LgPUl1djfXr12Ph\nwoVgjGHVqlWYM2dOzNk/9+zZg+3bt4diNonshwZ1doUxhqoGd8SCnARBEEAKB3WWl5ejqqoqZPkE\nQcBbb72V0EEKCgpQU1MTWq6trY1rmunOdrCn++GFVMdsBEGAqVOSAI9+Yx41AXzqIk3xQZpST0w3\nWlVVFZYvX45ly5b1+CCiKOK6667D8uXLASBsygIA2LJlC8xmc1hPZP369aioqIDD4YDb7caiRYti\n7oeIjdEgwEtzTxMEoTNxxWwU5XRp+traWqhq4lMXjx8/HuPHj4+4rWMSQpCrr74aV199dUL74Z1U\nj7MBAKMoAjj9/fGY68+jJoBPXaQpPkhT6olpbK644gosX74c9fX1KC8vx9atW3HnnXfqoY3QAImq\nCBAEkQJixmymTJmC22+/HbNmzUJhYSGWLVt2xlnkZJHqmA3QdWAnj35jHjUBfOoiTfFBmlJPXG60\n4uJiFBcXa62F0AGJxtoQBJECYqY+nzp1Cnl5eXrpSRqU+hwZRWU42EjpzwRBRCZlqc+//OUvk35Q\nInUY2qetJQiC0JO4qj4TyYGHmA0QHrfh0W/MoyaAT12kKT5IU+qJaWy+853vYM2aNWhtbQ17EX2X\nzgM7CYIgtCZmzOaee+7p+iFBwAsvvKCZqGRAMZvoNLr8qHf5Uy2D4IzgIwjF885stIrZxMxGe/HF\nF5N+UCK1RJpqgOi/WCQBmRYjRCFgUARBgNDxPQBBAEQh8Ltw+RTUtPpSKZnoh1AerI5QzCY+eNQE\n8KkrlqYsi4SiDAsGWCSkmSXYzRJsJgOsRgMsRgPMkgiTJMJoEGEQBRhEAekWCRlmg2aaUgFpSj09\nMjZerzfZOggdMRpEUN+mfyMJQGGaCXlpplCPJRFy7SbqARNJJaaxWbt2bdiyqqp4+umnNRPUn+Gh\nNhoQTH8OvOexGgSPmgA+dUXSZJNEFGVakG7p+XRVBlFAnt2YNE2phjSlnpjGZvfu3eEfEEW43W7N\nBBH6ECjISfQ3sq0SBmWYYUpCpYg0c+/caQTRkai/yJ07d+L1119HXV0dVq9ejddffx2vv/46nn32\nWXKj9RBeYjbA6bgNj35jHjUBfOoKapIEAYPSTci1myD0wG0WjZ6403i+TjzBoyYtidrPzsrKQllZ\nGXbt2oXS0tLQepPJhLFjx+oijtCOzgU5ie4RABhEEZIQcDEZBAEGMfBeFAQwBjh9MuTEZ9/oNXaj\niIFpJhg1qHsXdKdVOyk7jegdMcfZfPDBB5g5c6ZeepIGjbPpnhaPjNo+mt4qABCFgMGU2svviELw\nhS5/k/GkHzAq6DbYrjKGNq+CFq+MNr8+VifXJiHLakxqbyYSdU4vmr1K7IZEnydl42z6oqEhYtNX\n6qOJANLNBlg6pOdK7Sm6vCEKgbThdIsEn6yi1SejxavA18uZUUWcNqyBvyIkUYBJEmGR9Im95dpN\ncPk98Ks05JPoGRQl1hGK2cRHRUUFJAHIsUkYkmVBfroZGVYjbKbAuJBUGZpEvj+TJCLbZsKQTAsG\npZuQbjJARPtASgBGETAbBNgkEWkmEQPMBmRaDMixScizG1GYZkJxhhmlWRYMzbFiSJYVgzIsGJhm\nRrbNiAEWCRZJ1O03lUh2Gq+/Kd7gUZOW9Dw3kujTGA0iOOwcwGwQkGeTMCTLymXvJVEEQYC9fTCl\n0t4r6KvnlWaWkOFTyJ1G9IiYMZu+CsVsYnPU4YZHju/rD94ejQYBkhBwYxkNgbInycJsEJFmpucf\nnlFUhqMOcqf1Z1IWsyH6LwPtJqgMXepkRUIQAnEerQPRBN9QdhrRUyhmoyM8xWwAwGI0YMfXW7rU\nyYr0MhpE3QwNb9cpCI+6UqEp1mBPHmMRpCn1kLEhCCJhqHYakSgUsyEIoke0emVyp/VDtIrZUM+G\nIIgeoUXtNKHDSxICs8paJAESdaL6PGRsdIR8/vHBoyaAT12p1pRrNyHLIiHLIiHbGngd3f8NcmxS\n6JVrM4ZeeTYjBtqNyG8fSzQo3YSiAWYMzrSgJNOC0mwryrKtGJ5rQ1mODSVZVgzOtKIg3dwrnTzG\nR3jUpCWUjUYQRI8xiALy0kxh6yzMhxybKconeobNZEC2VUKjW07qfgn9oJgNQRB9ApUxHG/2xD02\njOgZFLMhCOKMRhQEDEwz002rj0Lfm46k2r8eCdIUPzzqOtM0WSQROT2YQZTH+AiPmrREt5hNZWUl\n1q1bBwCYN28exowZ0237vXv3Ys2aNRg1ahRuuumm0PpXX30V1dXVUFUVd999N/Lz8zXVTRAEX2Ra\nJLT5FLh0msaBSA66xGxUVcWjjz6KpUuXAgBWrFiBxx57rNsR6ZWVlfB4PNi/f3+YsQnyzTffYMuW\nLbjjjjsifp5iNgTRf/EpKo41eUAlQZNPn47Z1NbWorCwECaTCSaTCfn5+aitre32M+PGjUNaWlrU\n7RaLBZJEyXQEcSZiMohdsuAIvkn63bqyshIbNmwIWzdnzhzY7XaUl5cDAGw2G5xOJwoLC3t8nE8/\n/RSzZs3qts3mzZsxefLk0HsAKV3evXs3fvjDH3KjJ8jkyZO50dNRCy96gsv0/fH1/QmCgLKxE+D0\nKaH4x7nnngsAXZbXrV2HYcOHRd2eiuWqA1W4bu513OjpuKwFurjRqqursX79eixcuBCMMaxatQpz\n5sxBQUFBt5/bs2cPtm/f3sWNtm3bNtTV1WH27NlRP8ujG62j8eMF0hQ/POo60zXJKsOxOKY8qKio\n0PRG2hN41AT0cTdaQUEBampqQsu1tbUxDQ0ARLKDBw8exN69e7s1NLzC200BIE2JwKOuM12TJAoY\nGEd2Go83dR41aYkuQQ9RFHHddddh+fLlAIC5c+eGbd+yZQvMZnNYT2T9+vWoqKiAw+GA2+3GokWL\nAADPPPMMcnJysGzZMgwePBi33XabHqdAEASn2M0SMv0KHB5KF+AZqiCgI2e6yyNeeNQE8KmLNAVQ\nGcNxhwceJfLtjEeXFY+agD7uRiMIgtASUQjUaKPi0PxCPRuCIPoNjS4f6l1UrLM3UM+GIAgiBllW\nI2wS3dZ4hL4VHTnT6lj1FB41AXzqIk3hCO3utM5TuvFYh4xHTVpCxoYgiH6FWRKRm5Z4sU5CWyhm\nQxBEv6S6xYNWHxXrTBSK2RAEQSRAnt1ENziOoO9CR8i/Hh88agL41EWaomM0iMiyBcat8xgf4VGT\nlpCxIQii35JpMUKiwTdcQDEbgiD6NU1uP061+VMto89AMRuCIIgekGGRYDJQ9ybVkLHREV582R0h\nTfHDoy7SFBtREHBk3+5Uy+gCxWwIgiD6GQbFDwsFb1IKxWwIgjgjaPPKOOH0pVoG91DMhiAIohfY\nzRJsRrrlpQq68jrCmy8bIE2JwKMu0hQfQU3ZVn7K2FDMhiAIop9iMxmQbupcppPQA4rZEARxRuGV\nVWxtMlcAAAn9SURBVBx1eNAvb3xJgGI2BEEQScAsiciwUO9Gb8jY6AjPvmye4FETwKcu0hQfnTVl\nWY1d5rzRG4rZEARB9HOMBhGZ7UU6CX2gmA1BEGckispwpMkNuV/eAXsOxWwIgiCSiEEUkG3jJxW6\nv0PGRkf6gi+bB3jUBPCpizTFRzRNA1JYpJNiNgRBEGcIoiBwNdCzP0MxG4IgzmgYYzjW7IGHgjcA\nKGZDEAShCYIgIId6N5pDxkZH+pIvO5XwqAngUxdpio9YmlJRpJNiNgRBEGcgOZSZpim6xWwqKyux\nbt06AMC8efMwZsyYbtvv3bsXa9aswahRo3DTTTeFbfP7/fjv//5vXHnllZg5c2bEz1PMhiCIRKlp\n8cLpU1ItI6VoFbPRZQitqqpYu3Ytli5dCgBYsWIFRo8eDUGInnLo9/txzTXXYP/+/V22ffTRRygr\nK+v28wRBEImSbTOizadATbWQBOl8JxSFwEsQhID7SgBECIG/gT+BbUKwfeCNIACtGmnUxdjU1tai\nsLAQJpMJAJCfnx9aF41x48Zhz549XdZ7vV5UVlbioosugsfj0UyzFmzevBmTJ09OtYwwSFP88KiL\nNMVHvJrMkogBFgMcnsR7N9Fu+IDQfuM/fZMXAOzeXYnx48Z32CYE/gbf4/RnRCGwraNRCDMk7fsM\nGpjecKRXn45O0t1olZWV2LBhQ9i6OXPm4J///GdomTGGiy++GCNGjOh2X3v27MH27dvD3Gjr169H\nSUkJHA4HPB5Pt240giAIInH6hBtt3LhxGDduXNi66upqtLW1YeHChWCMYdWqVRgwYEDC+3a5XNi3\nbx+uvvpqbNy4sdu2WlwsgiAIomfo4kYrKChATU1NaLm2thYFBQUxP9e507Vv3z74/X4899xzOHny\nJBRFwZgxY1BUVJR0zQRBEETy0C0bbdeuXaFstLlz54b1frZs2QKz2RyWPbZ+/XpUVFTA4XBg1KhR\nWLRoUdj+Nm7cCK/XixkzZughnyAIgugF/bZcDUEQBMEPNKiTIAiC0Jw+MVVdIgNCo7WNtr67waOp\n1PXqq6+iuroaqqri7rvvRn5+fso1vf3229i/fz9EUcSiRYu40ATEN8hXT00vvvgiqqurYTKZ8O1v\nfxtTp05NuaaGhga88MILUBQFQ4cOxS233JJSTS6XC0899VToswcPHkR5eXlcmrTUBQCfffYZPvzw\nQxgMBlx//fUxB6Droemjjz7Cxo0bYbFYsHDhwm6HjSRbU7R7ZKID9cE4R1EU9vDDDzOv18u8Xi97\n5JFHmKqqcbftbj1jjO3atYt99dVXbM2aNVzo6ryP3bt3s1deeYUrTXv37mUvv/wyN5ree+899tRT\nT7EPPvggpZqCvPjii+zUqVNxadFL07PPPsv27dvHhabO+zh8+DD77W9/m3JdQZYsWcIURWFtbW3s\nwQcfTLkmj8cT0tHc3Myefvpp3TQxFvkemci+g3DvRus4INRkMoUGhMbbtqamJup6IJCqnZaWxo2u\nzvuwWCyQpPg6oHppOnDgAAYNGsSFpuAg3wkTJnTJXtRbU8eMy3i16KFJVVXU1dVh5MiRXGjqvI/3\n338/7h6plrqC319RURH27NmDHTt2xBwLqIcmxhhkWYbf74fdbofD4YAsy7poAiLfIxPZdxDu3Wit\nra2w2+2hLrbNZoPT6YzYjYzWFkDc++BN16effopZs2Zxo+nRRx9FS0sLHn/8cS40BW9UDocjLj16\naLJarXj++eeRlpaGW265Ja40fy01Wa1W+Hw+PPXUU3C5XPjud7+LiRMnpvw6AYDT6URDQwOGDBkS\nU49eusaNG4f33nsPsizHne2qtaZrrrkGTzzxBKxWK9ra2uByuWKOVUyGpmj3yETbA30gQSAtLQ1t\nbW1YsGAB5s+fj7a2tqgXOVrbRPbBk65t27bhrLPOirsXoYemZcuW4Z577sELL7yQck3BQb7nnntu\nXFr0uk633XYbli9fjuuvvx5vvvlmyjWlpaXBZrNhyZIleOihh/DnP/8ZPp8v5dcJAD7++OOEB2Br\nqauurg47duzA/fffj4ceegh/+ctfuLhWF110ER599FH8/Oc/hyRJcd2/kqEpGfsOwn3PJpEBodHa\nqqra7T4SdXnooevgwYPYu3dvQkkLelwrAMjMzISqxleqUEtNO3bs6NEgX72uk9FojNsFqrWm3Nxc\nOBwOZGdnc6NJURTs2LEDy5Yti0uPHrqqq6uhKIG6aIyxuAyN1po6smPHDpSUlOimKUjne2RPBur3\niXE20QaERhoMGq1ttPWxBo+mSte9996LnJwciKKIwYMH47bbbku5pmeffRZOpxOSJOG2226L2w2p\npaYgiQ7y1VLT//3f/6GpqQlWqxW333478vLyUq6pvr4er776KlwuFyZNmhS3a1ZLTVu3bkVtbS2u\nvvrquLTopeudd97B/v37oaoqLrnkkrizCbXU9NJLL6G6uhoWiwU/+tGP4vbMJENTtHtkrP/JzvQJ\nY0MQBEH0bbiP2RAEQRB9HzI2BEEQhOaQsSEIgiA0h4wNQRAEoTlkbAhCJ959912sXbu2y/q1a9ei\nuro6BYoIQj+4H2dDEP2FaHPDz507V2clBKE/ZGwIIg5OnjyJJ598EhMnTsSuXbtgNpvx6KOPwu12\nY/Xq1WhsbMSpU6dw0UUXYcGCBaHPrV69Gnv27EF2djYyMjLCxtx8+OGH+OKLL3D06FE88sgjKCsr\nC2177LHHcPPNN4fW3XTTTaFqBD6fD6+//jqOHTsGVVUxbty4sGMSBI+QsSGIOKmtrcXgwYNx/fXX\nh9ZZrVbcfPPNSEtLg8/nw49+9CPMnDkTWVlZ2Lp1K44ePYonn3wSAPDLX/4SAwcODH12xowZmDFj\nRsQR9J17QR2Xd+3ahZaWFqxYsSLZp0gQmkExG4KIk4KCAkyaNKnLelEUsX37dvzjH/+A0WgMFQXd\nt28fpkyZAlEUIYoiRo8e3aPSSJ0ZOXIknE4nfv3rX+PLL7+E3+/v9T4JQmvI2BBELzhy5AgeffRR\nNDQ0oKSkBAMGDAgZFFEUw4xLsop1DBgwAMuXL8c111yDI0eO4KGHHkrKfglCS8jYEEQv2L17N847\n7zxMnz4dNpsNJ0+eDG0bPXo0tmzZAsYYPB4PKioq4t6v3W5Hc3MzAGD//v1h2xhjYIyhqKgI11xz\nDZqamuDxeJJzQgShERSzIYg4iZRNdskll+Cpp57CN998g0GDBuGcc84JudHOP/987N69G/fffz8y\nMjKQm5sbNSOtMzNnzsRbb72FnTt3orCwMOxzJ06cwEsvvQSDwQC/348bb7wRFoslOSdJEBpBhTgJ\ngiAIzSE3GkEQBKE5ZGwIgiAIzSFjQxAEQWgOGRuCIAhCc8jYEARBEJpDxoYgCILQHDI2BEEQhOb8\nf9/NCI1XqzDMAAAAAElFTkSuQmCC\n" | |
} | |
], | |
"prompt_number": 22 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"treatment_effect('durdiarrea1', u'duraci\u00f3n del evento')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"text": [ | |
"<matplotlib.collections.PolyCollection at 0x1095c3310>" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8FPW9P/7XzOw12SQkkGRzTwBRuYmIIIiItgrF1lMU\nEKpoVbwUW4/fWms9hmu8nBYVsfizFhQpXk4Nx1uPBVQUEQ0IQgiIASJ3kg2EZHPZ+8x8fn9ssmST\nbHY22ctseD8f5uHO7OzMay/Me+fzmc8sxxhjIIQQQsKAj3UAQgghfQcVFUIIIWFDRYUQQkjYUFEh\nhBASNlRUCCGEhA0VFUIIIWFDRYUQQkjYUFEhPdbS0oLBgwfjqaeeinUUEmGHDh2CKIqxjqF633//\nfawjxBwVlRgQRRE8z+PEiROxjtKtpUuX4pVXXgl4/6OPPoonnngCxcXFUcmzevVqXHfddSE95s03\n30ReXh5SUlIwd+7cCCWLri1btiAvLy9q2/vss89w1113oampKaTHTZ48Ga+99lqEUilXX1+PcePG\noaCgAFlZWbj11ltx+vTpTsstWLAARUVFyM/Pxy233NLlMu+++y6GDh2KnJwcFBQU4IsvvvC7v6Sk\nBCtXrozYc4kLjESdx+NhHMex48ePxzpKXFm1ahWbPHlyjx67ePFidscdd4Q5UWx88cUXLDc3Nyrb\n+vHHH1lRURGrqakJ+bGTJ09mr732WgRShUaWZd+/NafTyebMmcOuu+46v2VefvllNmrUKHbu3DnG\nGGMLFy5kEyZM8Ftm69at7PLLL2fHjh1jjDEmiiJzuVx+y4iiyCZOnMg+//zzSD0d1aMjlShwOp24\n//77kZmZiREjRnT57a2wsBCbN2/2Tb/xxhu45ppr/JZZvHgx5s6di6VLl6KoqAjZ2dnYsGGD7/6G\nhgY88sgjGDZsGLKysjBy5Ehs27bNbx0ejwd//vOfMWzYMOTl5aGwsBDvvPOO3zI333wz8vLyYDKZ\nsGDBgk5Zm5qa8OCDD6KoqAgFBQWYM2cOzpw547v/2LFj4HkeX3zxBa6++mpkZmZiypQpsNlsIb1u\nFRUVGDduHMxmM66//nocOnSo0zKVlZX46U9/itzcXFx++eWdvjm2Yb28GlFZWRnGjx+P3NxcTJgw\nARUVFb77Tp06BaPR6PcaHDx4ECaTCc3Nzb551dXVuOWWW5CXl4dhw4bhn//8p982Fi9ejF/96ld4\n6qmnMHToUKSnp2P58uV+yzz00EOYNWsWLBYL8vLykJeXh//93//1W2bTpk0YM2YMcnNzMWLECLz9\n9ts9ft6PPPIIfv/738NsNne6780338SIESOQm5uLK6+8Ep999lmnZU6cOIFf/OIXyMrKwqhRo7Bj\nxw6/+7/55htMmjTJ91xmzpzZZY4VK1ZgzJgxPXoOHMchPz8fAKDX63HHHXfg22+/9Vvm2LFjuPLK\nK5GWlgYAuOGGG1BVVeW3zNKlS7F8+XIUFBQAAARBgE6n81tGEAT89a9/xW9+85seZe0TYl3VLgRP\nPPEEGzt2LGtoaGCiKLLi4uJORyqFhYVs8+bNvuk1a9awiRMn+q1n0aJFLC0tjS1atIjJsswcDgfz\neDy++51OJ9u0aROTJIkx5v22NXToUL913H777WzKlCm+b54ul4s1NjZ2mfvXv/41W7BgQaf506dP\nZ3feeSdzuVxMFEX22GOPsauuusp3/9GjRxnHcWzevHmssbGR2e12dvHFF7PVq1crfcmYy+ViBQUF\n7Omnn2aMMXb69Gl2xRVX+H3DbG5uZjk5Oeyll15ijDFWXl7O0tPT2cmTJzutb9GiRT0+Ujl58iRL\nTk5m77//PmOMsU8++YTl5OSwlpYW3zI33XQTe/75533TTzzxBLvnnnt806Iosssvv5z94Q9/YLIs\ns2PHjrG8vDz27bff+mVMSUlh77zzDmOMsc2bNzOdTsecTqdfni1btgQ8Utm9ezdLS0tjZWVljDHG\nDhw4wHJycti///3vkJ/36dOnmSAI7MyZM53u+/DDD1leXh47ePAgY4yxbdu2sdTUVFZRUeFb5tpr\nr2VXXHGF7/148cUXWXZ2tt/zyc7O9juaaW5u7jLLu+++G7Yjzeeff56NHz/eb15NTQ275ppr2GOP\nPcZeeuklduWVV7IPPvjAd78kScxgMLCHH36YXXrppeziiy9mf/jDH5jdbu9yG5deeinbtm1bWPLG\nGyoqUVBUVMQ+/vhj37Qoij0uKjfddJPi7VZUVDBBEHzTJ0+eZDzPs9raWkWP//Wvf82Ki4v95lks\nFsbzPLNarb55Ho+HDRgwwLeDbCsqbcWNMW8xW7hwoeLsW7ZsYZmZmUyWZd+81atX+zV/vfPOO+yS\nSy7xe9wDDzzAnnnmmU7r601RefbZZ9nUqVP95k2ZMoW9/fbbvun333+fjRw5kjHm3QHl5eX5duyM\nMVZWVsaSkpKYKIq+ec888wy7//77/TLOnTvXN+12uxnHcezo0aN+2+6u+evBBx9k/+///T+/eS+8\n8AKbNm2awmd73oYNG1hKSkqX902dOpWtWLHCb97DDz/M5s+f75vu2PwlyzLLyspiX3zxhW/euHHj\n2D333MO+//77kPP1hM1mYwMHDmRffvml3/wzZ874vnDdfffdbPz48X7LWCwWxnEcW758OXM4HKyp\nqYldf/317IEHHuhyOzfffDNbuXJlRJ+LWlHzVxRYLBYUFRX5plkvmmJSU1MD3scYw/LlyzFp0iRM\nnDgRDz30EGRZhizLAIDjx4+jX79+yMjI6PH2jx8/jrS0NKSkpPjmaTQaFBQUdHvigVar9eVQwmKx\nID8/HxzH+eZ1fN1OnjyJkydPoqioyPf34YcfwmKxhPCMgjt58iTKysr8tlNeXo7q6mrfMj//+c9x\n9uxZ7NmzB59//jmSk5Nx1VVX+a3D7XZj8ODBvnWsXLnSr8ms43PUarUAENLrduLECQwePNhv3uDB\ng3H8+PGQnjPgbeZMSEgI23Y4jkNOTg7q6up88zZu3IiLLroI8+bNQ0FBAV566aWQcyrFGMO8efPw\n61//GpMmTfK7b86cORg5ciQ2btyI119/Ha+88gr+4z/+A1arFQCQlpYGQRAwbdo0GAwGJCUl4eGH\nH8b69eu73FZiYqJf0+eFRBPrABeC3NxcHDlyBJdeeikAQJKkTsvwPB9059F+B9uVv/71r1i/fj3e\ne+89ZGZm4ujRoxg0aJDv/vz8fDQ0NOD48eO+duFQ5efno76+HufOnUP//v0BAC6XC0ePHu3xOruS\nm5uLEydOgDHme94dX7dBgwbh8ssvx1dffRV0fcFeu+4MGjQIv/jFL7Bu3bqAy2g0Gtx111144403\n0NDQgPvvv7/TOtrek0hkbJOfn4/Kykq/eZWVlSgsLAx5XYWFhX4FoKvtTJs2rdvteDwev9vHjh3z\n9W8AQL9+/fCnP/0Jf/rTn1BVVYWJEyfisssuw7XXXhty3mAefvhhpKend9lPuHPnTjz33HO+6csu\nuwyMMRw7dgyjRo2CVqvFFVdcgQ0bNmDIkCEAvMW+rfB3VFtbG9Z/D/GEjlSiYM6cOXj22WfR0tIC\nm83WaYcDeHei+/fvB+D9QP7973/vtEywI5xTp07BbDYjIyMDdXV1eOyxxwCc/4edl5eH2267Db/6\n1a983yg9Hg/q6+u7XF9X2zObzbj55pvx29/+Fk6nE6Io4o9//CMuuuiibjtSQz06Gz9+PBITE7Fi\nxQoAwN69e/GXv/zFb8d70003oa6uDsuWLfM9R4fDAbfb3evtt3fnnXdi8+bNWLduna/wNzc3d/oS\nMG/ePLz99tvYsGFDp9OXR48ejUGDBuGRRx6Bw+EAALjdbt/tUDKmpqbizJkzvlNe2x8h3n///fjH\nP/7hO0Fj3759eOGFFzB//vwQnzVwxRVXwGw24+uvv+5034MPPojnn38eBw4cAAB8+eWXePPNN/0+\n24wxPP300zh06JDvttlsxtixY33LHDt2zPe8RVGEJEkwGo2dtvfuu+/ijjvuCPk5tHn00UcBwPd5\n6ui6665DSUkJrFYrRFHEc889h8TERN8XQQAoLi7GsmXLcPz4cYiiiNdeew3Tp0/vtC6n04m9e/di\nypQpPc4b12LQ5HbBsdvtbPbs2SwlJYUNGzaMvf3224zneb8+lS+//JINGTKE/fSnP2Vz585lixYt\nYtdcc43fehYvXuzX5t6RxWJhkyZNYmazmY0dO5Zt2rSJabVa9uOPP/qWcblc7Omnn2aXXHIJy83N\nZUVFRez111/vcn2BOuobGxvZfffdxwoKClheXh6bPXs2s1gsvvuPHj3KeJ7361MJtK7u7Nixgw0d\nOpSlp6ezqVOnsgULFnQ6FfT06dPs9ttvZ4WFhaygoICNGDGC7dmzp9O6Fi9ezBITE1lubq6v8z8U\nlZWV7Be/+AXLz89nBQUFbMyYMV2eEHD99dez22+/vct1WK1W9tBDD7GBAwey/Px8dskll7ANGzb4\nZez4/vI87/f+tbnrrrtY//792eDBg9m9997rd9+///1vNnr0aJadnc2GDRvG1q1bF/LzbbNy5Uo2\nffr0Lu9744032NChQ1l2djYbM2YM27Rpk9/9kydPZk8++ST7yU9+wtLT09no0aPZ/v37/ZaZO3cu\ny8nJYXl5eWzEiBFszZo1XW5rxYoVbMyYMT16Dhs3bmQcx7G8vDyWm5vr+2v/7+/cuXPsnnvuYWaz\nmfXv359NmTKlU1bGGHv11VfZ4MGDWVZWFpszZw5ramrqMutvfvObHmXtCzjGovfLjxUVFb42yFmz\nZmH48OEBl/3yyy+xadMmCIKA2267rdtlCSGRM336dFx//fX43e9+F+soqrdjxw789re/xZdffhmw\nP6qvi1rzlyzLKC0tRXFxMYqLi1FaWtrt4f6//vUvPPXUU3jiiSc6jaMghERPaWkp9u/fH/YTIPqi\nv//979iwYcMFW1CAKHbUWywWZGVl+QYLZWZm+uZ1JTc3FwcOHIDVavV1jBFCok+j0eDVV1+NdYy4\noIbL0sRa1IpKS0sLEhMTsXbtWgBAQkICmpubAxaVkSNH4uOPP4Yoit12eLUfhU4IIUS5n/zkJ2Ff\nZ9SKislkgs1mw7x588AYw+rVq5GcnNzlsrW1tdi9ezcef/xxAMCiRYswcuTITpdEaDN69OiI5SaE\nkL5o9+7dEVlv1PpUzGYzampqfNMWi6XL6wkB3v6XtjEJjLEuTxFVs47X21IDyqScGnNRJmUoU+xF\n7UiF53nMmDEDJSUlAOB34biysjLo9XrfEUdWVhYuuugiPPvss5BlGVOmTAl4lEIIIUQ9onpKcSRs\n3ryZmr8IISREu3fvjkifCo2oJ4QQEjZUVCJAjW2olEk5NeaiTMpQptijokIIISRsqE+FEEIuQNSn\nQgghRPWoqESAGttQKZNyasxFmZShTLFHRYUQQkjYUJ8KIYRcgKhPhRBCiOpRUYkANbahUibl1JiL\nMilDmWKPigohhJCwoT4VQgi5AFGfCiGEENWjohIBamxDpUzKqTEXZVKGMsUeFRVCCCFhQ30qhBBy\nAaI+FUIIIapHRSUC1NiGSpmUU2MuyqQMZYo9KiqEEELChvpUCCHkAkR9KqQTpyjHbNuSzHCmxYU6\nmxuSHNffSwghYURFpZdcXezYo9GGKskMNU1OnLI64fBIAZdpdHhQ0+TCZ19/i0aHB3a3BLGXRcDh\nkXC60QmrU0K9Q8QJqxNNTjHk9ai1rVmNuSiTMpQp9jSxDhDvmpwi0k266G/XJcIjAx5Zhr3RhX4G\nAWkJOmh4Dm5RRpNLRKNThNRaP+odImptHgAAB0DDA1qBh07gvP/nOWg1PHRC4O8ZjDE0ODw4ZxfR\nvix5ZAZLixtNThEDErUwaIVOj3V6JDhEGU6PBIBDgpYHJ9DHj5C+hvpUekGSGY43OFCQaoTAc1Hb\nrswYjjc44elwxKHhAL2Gh83T82YxLQ8YNDwMWgEGDQ+9hgfPeQvVmRY37Aqa3FINGiTpBbhEGQ5R\nhsMjIVAkg4ZDok6AUSPAqOXBcdF7HQm5kEWqTyWqXxUrKiqwfv16AMCsWbMwfPjwgMueO3cOK1eu\nhCRJGDRoEO66665oxVTMIzOIDLC7JSQZovdSNjvFTgUFAEQGiL0oKAC8Rz9uGc1u73p4AAYtD5dH\nRteNbJ01OEU0KGwOc4oMTlEEIELggKwkPRJ0nY90CCHxIWp9KrIso7S0FMXFxSguLkZpaSm6O0ha\nt24dZs+ejaVLl6qyoACA3Lpjb3b770Aj2YbKGIO1B/0X5eXlPdqeDMAeQkEJRcdMEgMszW64pdid\ngACosw2cMilDmWIvakXFYrEgKysLOp0OOp0OmZmZsFgsXS4ryzJqa2tx8cUXK1p3+zdt27ZtUZsW\nZYby8nJ8s2sPPK07wm3btmHfvn0R2/7W7Tux47s9vuny8nK/nXO8T+/asweffL3Td0ZZNN/PtulI\nvn80Hdnpffv2qSqP2j9PkRC1PpVDhw6hrKzMN80Yw4QJEzBkyJBOy1qtVpSUlMBsNsNut+NnP/sZ\nxo4d2+V6Y9mnUm/3oM7u7fxOT9Qi1aiN+DZPWB1winHdDaZIkk5AVrI+1jEI6bPifpyKyWSCzWbD\nnDlzMHv2bNhsNiQnJwdcNiEhAY8++iiefPJJvP/++3C73dGKqlj78RktrtCbpEJlc4kXREEBgGa3\nhHq7+t5zQkj3olZUzGYzampqfNMWiwVms7nLZTUaDQYMGACr1QqNRgONRp2nnory+bZ/h8h8gxHD\ncXh5zu5Gnc2NFpfoG1fS4Oh54eppn0okBctUZxfR3IP+o96KdPNAT1AmZShT7EVtb83zPGbMmIGS\nkhIAwMyZM333lZWVQa/X+zVj3X777Xj11Vdht9sxfvx46HTRHwsSTMdBhGeaXeB5Do2yFiesDjAG\nMACMeceFZCcbFJ167BZlnLOf35lyAHQCB5d0YRyltHemxQ2twHU59oUQoj40TqUXjtY7ujy1N5AE\nLY/sZD34IGMxzrS4YHVG4nyr+KQTOOSmGKCJ4lggoi4yYxBlBlFikGTvbandPK3AQafhoRe8Y6ui\nOW4s3kgyg0uUUbl/b/yPU4mU9k0kAs9FZZxD24c8FHaPjNpmN8xJuoCD/NySjCYqKH7cEoOl2YWc\nZD0NjowySWbwSDI8EoPMGOS2o+/Wayow1voHBsYA7z+J88vxnPdIm+O41tscOA7eP3DgWpcB4Puy\n1VYwPK0FxNNaRLr91yYCcHn/3XAA9BrOO3i3tcjoNRfmwFqZeQuIW5ThkmQ4RRkuMchr2Ut9oqjU\ntJzv0OUAZCfpkKiP7FPr7kNeXl6OUaNGdXlfs1uCYHMjw9T1mU2NDhGRGKXRXaZYCSWT3SPjWIMD\nHOfdEXl3VN4dU+t/EHgOWoGDlueh4b3fXHtydLNt2zZMnDgx5MdFUqQyMda605a8xUNs3ZmLEoNH\nliHK6NHnPFbaMnkH1UpA6wirtkG87QuNThOdLuVofZ4YY3BJzFtARBlOUYJLZBHZn3SnTxSV9hiA\nmmY3srnIHrH05sq8VqcEnnNjQKJ/P5FHktEYg47peOG9WEDH1z3w+8ABEDh4m0YEHhqBg8Bx0PAc\nhNY/Dc8FbY4MxNv0IvuaY0R2vmlGw3u32bbd7q6pFk2izOBwS3CIEpweGW4p+judWGgbxGtvd8UJ\nLQ8Ibe99u49A+08Dh8D3c+2Owtq+5LQ9pu1oDADcnA71dk+7L0L+j2mb9q2z4xenAMu2FY/zRyAy\n1NDt2if6VEz5l3SaLwDISo7cJT+anaLfEVJPpOgFZJjON4XV2dyo78UZXiR0bRfXbCswwTDm3TF7\nZOY7EUMJgQP0Ag+d5vwFPDWCt+2f59DjwhaMzBicHhkOUYLdLcEZ4aYPEn4dPxltH5Xe/uJEy4lK\n6lMJhQSgpsmFDJMOWoHznYUlyQwJOqHXHXlSGGpxo0uCKLtgTtKDwdv0RaKLofV6ZzKD8hIROokB\ndlGG96S+831mbZ9CnoOvwAic9+hJ4L3Fhuc4CFzb7db+Cf78vI6fZWfrRTwdHgkOd2QusUOip9Ox\nucq/FajjmDxCJHj7W040unCy0YVTTS7UtLhxqtHZ5e+ghLTubt7ZUMaE2DwyTjc5UW93R/QffzyO\nU4mVaOZqK2US856Q4BQZbB4ZzW7J93s1dXYPNn29EzUtbpxuduNUkwsnrE4cbXDiSL0Dh+vsOFpv\nx/EGB47WO3DC6sRZmwctES4oanz/KFPs9dkjle64JIZTVifSEjpfVkWv4RU1mYlhbLw836lISGja\nPoVd9zcREn19tk+lp3gAOSl6GIMMtjvd6OzV75YQQkgsRapPpU83f/WEDMDS4vZddTiQ3v4kLyGE\n9EVUVLrgkRhqm92QuzmI666oqLENlTIpp8ZclEkZyhR7VFQCsIsybK6u+zkkmfX6dD5CCOmLqE+l\nGyl6AZlJnUe+O0UZJ6zOiGyTEEKigfpUYsDmkbr8yWOZDlMIIaRLVFS6IcqAo4szvIJ10quxDZUy\nKafGXJRJGcoUe1RUgrC5O/er0JlfhBDSNepTCUIncChMNfrNO9viRgNd+JEQEseoTyVG3BKDw+N/\ntNL+Z4QJIYScR0VFAXunokJ9KuGgxkyAOnNRJmUoU+xRUVHA5vI/C6yX16IkhJA+K2ifyq5duzBm\nzBjftCzLeOONN3DPPfdEPJwSke5TadP+4uJx3QlFCCGIYZ/KRx995P8AnsfJkyfDHkTtWLs/Qggh\nXQtYVE6dOoXt27ejubkZO3bswPbt27Fjxw588sknqKuri2bGuKPGNlTKpJwac1EmZShT7AX8PZWa\nmhp89913aGlpwXfffeebr9Vq8dBDD0UlHCGEkPgStE/lb3/7Gx588MFo5QlZtPpUCCGkL4lZn0o4\nC0pFRQUWLlyIhQsXYv/+/UGX93g8mD9/PjZu3Bi2DIQQQiInaqcUy7KM0tJSFBcXo7i4GKWlpV1e\nrLG9Tz/9FAMHDgTHcd0upzZqbEOlTMqpMRdlUoYyxV7QonL06NFO83744YeQN2SxWJCVlQWdTged\nTofMzExYLJaAy7tcLlRUVGDMmDFBi8/evefftPLycr83MRbTVYerVJWHpun9u1Cmqw5XqSqP2j9P\nkRC0T6W4uBhPPfWU37yFCxdi6dKlIW3o0KFDKCsr800zxjBhwgQMGTKky+U/+OADFBYWwmq1wul0\nYurUqV0uR30qhBASupj1qfB850V6cg1Kk8kEm82GOXPmYPbs2bDZbEhOTu5yWbvdjsrKSowaNSrk\n7RBCCImdoEVFEAS/cSk1NTVdFppgzGYzampqfNMWiwVms7nLZSsrK+HxeLBixQp8+umn2LJlC06d\nOhXyNmMl0oeXPUGZlFNjLsqkDGWKvYDjVNrMnDkTS5cuxfjx4yFJEr755psejVPheR4zZsxASUmJ\nb71tysrKoNfrMXr0aADA6NGjfbe3bNkCl8uF3NzckLdJCCEkuhT9nsqZM2ewZ88ecByHUaNGISMj\nIxrZFKE+FUIICV2k+lSCHqkAQEZGBqZMmRL2jRNCCOlbFHWOtB2ptHE6nREL1BeosQ2VMimnxlyU\nSRnKFHtBi8rWrVuxYsUKvP322wC8Z34988wzEQ9GCCEk/gQtKps2bcLixYthMpkAIO5Gt8eCGk+F\npkzKqTEXZVKGMsWeolOKtVqtb9rpdMLtdkc0FCGEkPgUtKhcdNFFeOutt2C327Fr1y4888wzmDhx\nYjSyxS01tqFSJuXUmIsyKUOZYi9oUbn99tuRnp6O9PR0fPXVV7jxxhvx85//PBrZCCGExBlF41TU\njMapEEJI6KJ+7S9ZlsO+MUIIIX1bwKKybNkyAMDy5cujFqavUGMbKmVSTo25KJMylCn2AhaVxsZG\nAEBDQ0PUwhBCCIlvAftUXnzxRRw+fBhNTU2drvXFcRyee+65qAQMhvpUCCEkdFG/9tcjjzyCxsZG\n/Pd//zd+//vf9+g3VAghhFxYuj2lOCUlBaNHj0Z6ejoyMjL8/khgamxDpUzKqTEXZVKGMsVe0HEq\n7X/3hBBCCOkOjVMhhJALUNTHqbzzzjsAgPfffz/sGyWEENI3BSwqlZWVAOD3OypEGTW2oVIm5dSY\nizIpQ5liL+DZX263Gy+//DJqa2uxZs0av7O/OI7D3XffHZWAhBBC4kfAPpWmpibs378f//znPzF9\n+vRO90+ePDnS2RShPhVCCAld1MepJCcnY8KECfj6669VU0AIIYSoW9BTih977LFo5OhT1NiGSpmU\nU2MuyqQMZYq9oEWFEEIIUUrROJWtW7fCYrFg1qxZYIzh4MGDuOQSdfRjUJ8KIYSELup9Km3Wrl0L\nSZJQVVWFWbNmgeM4vPXWWygpKQl5YxUVFVi/fj0AYNasWRg+fHjAZVetWoXq6mrIsoz58+cjMzMz\n5O0RQgiJrqDNX1VVVbjnnnug1+t7tSFZllFaWori4mIUFxejtLS024tU3nfffVi0aBFmzpyJjz76\nqFfbjjY1tqFSJuXUmIsyKUOZYk9Rn4okSb7bFoulR78KabFYkJWVBZ1OB51Oh8zMTFgslqCPMxgM\n0Gi6P6Dau/f8m1ZeXu73JsZiuupwlary0DS9fxfKdNXhKlXlUfvnKRKC9qls3boVn3/+Oerq6nDl\nlVdi+/bteOCBBzBq1KiQNnTo0CGUlZX5phljmDBhAoYMGdLt41atWoVp06YhJyeny/upT4UQQkIX\nsz6VSZMmoaioCPv27YNGo8GSJUt6dOl7k8kEm82GefPmgTGG1atXIzk5udvH7Nq1C9nZ2QELSpua\nJpfvtobnMCBRC47jQs5ICCGkdxQ1f+Xl5WHatGm48cYbe/xbKmazGTU1Nb5pi8UCs9kccPkjR47g\nhx9+wE033RR03a/trPb9vbjtJJ7afAwbKutQ2+zuUdbeivThZU9QJuXUmIsyKUOZYi/okUq48DyP\nGTNm+M4aa/87LWVlZdDr9Rg9erRv3gsvvID+/ftjyZIlyM/P7/ZaY8U/KfLdZozhWIMTu0414aWv\nT8CgEWADNDTqAAAgAElEQVTU8mAMcIgSWlwSkg0aXJqRiKI0IzQdymqSXoOiNGOYnjUhhFxY+vTv\nqciMobrJBY/kfYpGLY9EnYB6uwc/nLHjhNWJjs/+eIMDs0eZMTLLFOnohBASMzHrU4lnPMchN8XQ\naX6SXoOC1K6PRo7WO/Dq9tMwJ+Ujw6SLdERCCOlT6DItHRSlGXHTpQOw+tvTcImhnzoNqLMNlTIp\np8ZclEkZyhR7VFS6MLEwBbkpBnx04GysoxBCSFzp030qvVFnc+P5rSfw9NRB4On0ZEJIHxP136i/\n0A1I1CFRJ+CE1RnrKIQQEjd6VFRcLlfwhfqA4WYT9ltsIT9OjW2olEk5NeaiTMpQptgLWlRKS0v9\npmVZxvPPPx+xQGoyPDMR+y0tsY5BCCFxI2hR2bdvn/8DeB4OhyNigdSkKM2IersHVocnpMeFel20\naKBMyqkxF2VShjLFXsBxKnv27MGePXtQW1uLNWvW+C5T39jYeME0fwk8h6GZifi+1oarC/vFOo7q\nVDe5wHOAOal3P4tACOk7Ah6ppKamYuDAgTAYDCgqKsLAgQMxcOBAjBs3DgsWLIhmxpjqSb+KGttQ\nw5mJMYavjlrx0raTePGrk1i/7wwcHin4AyOYKZzUmIsyKUOZYi/gkUphYSEKCwvhdDoxefLkKEZS\nl0szEvE/5bVwSzJ0Ap0s55Zk/HNvLU5anXh0Uj4MWh4fHajDU5uP4uah6RiblxzwCtEOj4TDdQ4I\nHHDRgIQoJyeERAONU1Fg+VcncFV+Cga2XmhSr+GQpNdA4C+s8St1NjdWf1sNc5IOc0aZoW93Nc5j\n9Q68W1ELDc9j1mUZyE0xQJIZTlidqDxjQ+VZO041OlGYaoTMvPOLUo0YmpmISzMSYU7S0c8VEBJF\ndO2vGJpU1A8fV9b5pl2ijBaXBJNewNWF/TDtkgExTBeYwyPhm+ONOHTWjn5GDfonaNE/QYu01v8n\n6QXFO/IDtTas212DG4f0x+SB/To9rjDNiD9cW4BvjjVi5denkJ2sx8lGJ1KNWlyakYCpF/fHoP5G\n39GewyPhUJ0dB2pt+OLHBgDA0MxEXDswFdnJ1EdDSLwKWlQOHjyITz75BHa73W/+448/HrFQanNF\nbjKuyPX/QTFJZjjT4sYLX53ATy9K82saKy8vj/gZH4wxVJ1zIFmvQbpJ6zfq3+oQ8eWRBnxzvBGX\npCdgfEEKDlQdg12TiZNWF87ZPaizuSEzINOkQ0aSDpkm759Ry8PukWB3y7B7JNjcEhqdIg7XOXDv\nldkY3E2zFc9xmFjUD5fnJOHQWTsG9jcixdD1R8yoFcBqf8ScUaPAGENtixt7q1vw169P4sGrclGQ\n2vlCoNESjfcvVJRJGcoUe0GLyssvv4xbbrkF6enpvnnUTOE9MywrWY/8fgZ8b7Hh8pykqG6/oqYF\n/7O3FjqBR7NLRHayHrkpenhkhn01LbgyLxmPXZuPAYmtV1o+I2HUcP8fWLO5JdQ2u1Hb4v3beaoJ\nTo+MBB2PBK2ARJ0Ak05AhkmH6cMzAhaIjhJ1QkivB8dxMCfpYb5Yj6xkHV4pO4UHr8pBIf2uDQmA\nMQaHR0a9wwOrQ0SqUUNnIapE0D6Vp59+Gk8++WS08oQs1r9RX3a8EfstLbhvXPc/eRxOkszwzOfH\ncMvwdAwzm2D3SKhudOFUowuizDC+IAWJOiFqecJtv6UFb+624IGrcugH0+IEYwyizOCWGNySDI/k\nndbwHLQCB53AQ8tz0AicomvpSTJDo1NEvd2DBoeIBocH9XYP6h0iGlrnAUBaggYpBg3q7SKsTg9y\nUwwo6GdAQar3r38C/bQ44H09q5tcON7gxHGrEycanPjdYGds+lTGjRuHb7/9FmPHjg37xvuCy7JN\n+N/WU2qN2ujsyHecbESSXsDQzEQAQIJWwOABCd02TcWT4WYT5o4249Xtp3H/uBwM7E+FJZoYY2hx\nS6izeVr/3Kize9DslOCWZL/C4Z2W4RYZhNYCohd4aAUOAs9BlBk8EoOnXaERfIWGg5b3LqttfQxj\nDA0OEU1OEUkGDdKMGqQatUhN0CI7WY/hZhNSjRqkJmhh1PB+BcPukXCiwYkTVie+O92M9/afhSgz\nb4FpV2iS9H27K1lm3qb5462vxfEGJ6qbXOifoEVBqgH5/QyYWJgCNB+PyPaDvrpr166FKIrQarW+\neRzHYe3atREJFG8StAKGpCdgb00LrspPARDZNlS3JOPfledw75XZIX0DU2O7bneZhplNuPOKLPx9\nx2ncNy4bg/r3vGAyxuCRGQSOU3TGXk9fK5coo8HhQbNLQqpRg7QEbdiucB3u948x1tq3dr5wnLV5\nUGf34JzNA54DBiRqMSBRhwGJWgzqb0SyXgO9hoeu9cij6mAlLhsxzHsUIih7bdvei/aFxi0xeGQZ\nYusvtKYlaJFiCP3sygStAGf1YdzY7nWyOjw43rpj/eLHBpywOmHU8ijoZ0RBqgHJBgEcOHAcwAGt\n//dOwzcNv2XQuozAw/eZ0vDeIzAN3zqf5yC0Tn+/fx8uH3UZBC78XQdtRbjtCOR4gwMnrS6YdALy\nW4vo5dlJyOtn8DtbEwBamsMaxSdoUVm3bl1kttyHjMlNwjfHGn1FJZK2HrEiv5/hgmgWGpqZiF+P\nycKqHdWYN7bzSQIeSUZNsxunGp04ZXXB6hTh9MhwSTJcogyn6P2/S5TBc95vwUatgBSjt8kkRa85\nf9sgIEmvAQfgjIvD0XrvpYgYA863D3t3hlanCGtrk0yD4/xtUWboZ9AgSa9Bg8MDm1tChkmHrCQ9\nMpN0yErSwZykx4BEbUxOR6+zuXGozo5DZ71/HMchw9RaOBK0GJ1jwIBEHdITtUhQ0Hxaq2VIVtjP\n1objuNaiBACRP7LvZ9Sin1GLy7K8fXwyYzjb4sFxqwPHG5w41ehsne9dnjEGhvPvu7dzoOM8Bsa8\njxFlBokxSHLrH2OQZG9zU9t9HtGAN08egsQAnoOvCAmctzlQw/v/aTvN473/bzcfgK85i+fgOwK5\n4aL+yO+nhymGR2M0TiUM3KKMJzf9iAU/KQr5H1ko7B4JSz89ikeuybugOiUPnrVhzc4a/MewdDg8\nEk41unCq0YmzLR6km3TITfGepNA/QQu9hodBw0Pf+td2W+A5yIyhxeU9m63R6W1iaWz31+ySvDuR\ntm+prdv3fUMFoOF59DNq0K+tWabd7QStf3OM0yOjtsUFS7MbNc1u1Da7UNPsRqNDxIBELdJNOiTp\nz58QkajrcFsvdGriCYXV4TlfROrsECWGIekJGDIgAUPSE6i/IcoYY+cLUWvR6fQntZ+Wu5jn/ZMZ\nYE7SoSDVgH4GTY/ex5iOU9m6dSssFgtmzZoFxhgOHjyISy6J7Y5cTXQaHsPNJuypbsa1A1Mjtp3P\nDtdjhNl0QRUUALg4PRH3XJmNTw6dQ2aSDoMHGHHdoFSYk3TQhnCVA57jkGzQINmgQV4E87YxaHkU\npBpRkOp/VOmWZJxpcaPO5kGLS0KLW0KDQ8SpRhda3N7TuG0uCTaPBJcoI0Er+M7IM2rP/9+oFZCg\nE5DQdlvLw+6Rcbi1kDS7RFw0IAEXpyfgpxelIdNEA0xjieM4CK1HKn2Zoj4VSZJQVVWFWbNmgeM4\nvPXWWygpKYlGvrgxJjcJH35fB57jcPzkSWSas1sPf73fTHQC12k8SyAOj4Q1O2uQbtJiYJoRg/ob\nAXDYdtSKJ64r7FG+eOtT6WhIuvfbdTRE+rXSCTxyUwzITQk+FkeUGexuCbv3fY+CQUNg90hweGTY\n3d7/t7hEnG2RffO1AochAxJwdWEWspP1Ef3V0nj/TEWLGjNFUtCiUlVVhZKSEixZsiQaeeLWJemJ\nOJRhx+lGJ5o9PExuCRqBh8ABOi2PI/UOrN1Vg3vHZgf9h77lxwYIPJBq1OK70814t+IMJJnh6sIU\npCZou30s6Vs0vPfoqp+WXRD9aCT+KWr+kqTzV6C1WCyQZTligeKVwHOY7htcaO50v0eS8f+VncJ7\n+89ixoiMTve3sbklbDlixR8m5SPd5B24yBjDWZsHqcae99eo8ZuSGjMB6sxFmZShTLEXdC91ww03\noKSkBHV1dVi7di22b9+OBx54oEcbq6iowPr16wEAs2bNwvDhw8OybDzQCjzuG5eD5VtP4POqelw/\nOK3L5T6vqsfILJOvoABoPUtH1+XyhBCiJkEb+CdNmoR7770X06ZNQ1ZWFhYvXtyjyivLMkpLS1Fc\nXIzi4mKUlpYi0IlnoSyrRoF+PyFBK+A343PxeVUD9pzufJJ4s0vEV0et+NnF/aOWKZbUmAlQZy7K\npAxlij1F7Sl5eXnIy+vd+TIWiwVZWVnQ6bzfuDMzM33zerMsAOzdW47LLvMWurY3sK3wxWK66nBV\nwPtPHPoe16VxeLfCO/hLV3/Ud/9nh+tRaHDjxKHvkRbmfG3U8Pqofbq79y9W023Ukket01WHq1SV\nR62fp0g2yQUdp7J161Z89913cLvdfvNDvUrxoUOHUFZW5ptmjGHChAkYMmRIr5ZVwziVnqhpcuGV\n7adwTWE//PSiNDS5JDy9+Sj+6/oi9OtF3wkhhCgRs3EqH374IWbPno3ExMRebchkMsFms2HevHlg\njGH16tVITk7u9bLxKitZj99fk49Xyk7D6hQhM+Cq/BQqKISQuBa0T2XmzJk4cuQImpub0dTUhKam\nJjQ3h37RGLPZjJqaGt+0xWKB2dz5LKlQl1UjpW2o/YxaPHJNHmqa3NhxohE3DOm68z6amaJJjZkA\ndeaiTMpQptgL+rX47bffRl5eHs6dO+c3f9y4cSFtiOd5zJgxwzdocubMmb77ysrKoNfrMXr06KDL\n9jVGrYDfjM9Bnc3T56+eSgjp+4L2qbzzzju47rrrVHukEK99KoQQEksx61P57LPP8NFHH9Gl7wkh\nhAQVtKi89tpr0cjRp6jxWj+USTk15qJMylCm2FN+idd2Op5eTAghhAAKikppaanftCzLeO655yIW\nqC9Q47cSyqScGnNRJmUoU+wFLSr79u3zfwDPw+FwRCwQIYSQ+BWwqOzZswevv/46amtrsWbNGrz+\n+ut4/fXXsXz5crhcrmhmjDtqPC+dMimnxlyUSRnKFHsBO+pTU1MxcOBA7N27F0VFRb75Op0OI0aM\niEo4Qggh8SXoOJWNGzdi6tSp0coTMhqnQgghoYvUOJWgfSpqLiiEEELUpUenFJPuqbENlTIpp8Zc\nlEkZyhR7QQc/VldX4//+7//Q0NAAwHsZ+sbGRjz77LMRD0cIISS+BO1TefzxxzFp0iRUV1dj4MCB\nOHLkCHJycjBt2rRoZewW9akQQkjoYtanotPpcNNNN2HIkCFITU3Fvffei127doU9CCGEkPgXtKgY\njUYAQEFBAbZv3w5RFDtdBp/4U2MbKmVSTo25KJMylCn2ghaV6667Ds3NzSgsLAQAPPDAA7jhhhsi\nnYsQQkgcCtqnonbUp0IIIaGLWZ8KIYQQopSiorJ161a8++67ALynFFdWVkY0VLxTYxsqZVJOjbko\nkzKUKfaCFpW1a9eiqqrK98JwHIe33nor4sEIIYTEn6BFpaqqCvfccw/0en008vQJavz9BMqknBpz\nUSZlKFPsKWr+kiTJd9tisUCW5YgFIoQQEr+CFpUbbrgBJSUlOHv2LNauXYslS5Zg5syZ0cgWt9TY\nhkqZlFNjLsqkDGWKvaDX/po0aRKKioqwb98+aDQaLFmyBBkZGdHIRgghJM5csONUOAB6gfPeaEeU\nAVGO65eEEEKCitQ4laBHKmfPnkV6enqvN1RRUYH169cDAGbNmoXhw4d3u/yqVatQXV0NWZYxf/58\nZGZmhrxNgQMStAJ4DuA4gOc48BwHncDBqBUg8Fynx7glGaesTohUVwghJGRB+1T+8pe/9Hojsiyj\ntLQUxcXFKC4uRmlpKYIdIN13331YtGgRZs6ciY8++qjbZfnWAw4O3kKSoheQk6RDUZoRWcl6ZCbp\nkWHSY0CiDmkJWpj0mi4LCgDoBB4ZJl0Pn6mXGttQKZNyasxFmZShTLGn6CrFvWWxWJCVlQWdTged\nTofMzExYLBZFjzUYDNBouj+gOnNwLwb3N2JwfyMsleU4vHcnEvUa8ByHbdu2Ydu2bb5llUyX79yO\nNKN3m+Xl5X4fCiXTVYerQlqeptU1Te9f/E5XHa5SVR61f54iIWifyubNm3H69GnccsstfvNNJlOX\ny1dUVODDDz/0m3frrbdi586dvmnGGCZMmIAhQ4YEDbhq1SpMmzYNOTk5AfONHj066HpCxRjDSasT\nTonawQghfU/M+lTee+89AMCOHTt88ziOw8qVK7tcfuTIkRg5cqTfvOrqathsNsybNw+MMaxevRrJ\nyclBw+3atQvZ2dkBC0okcRyHRL0Ap12M+rYJISReBS0qL7/8cq83YjabUVNT45u2WCwwm83dPubI\nkSP44YcfMHfu3F5vv6eMGgFA6EWlvLxcdaNoKZNyasxFmZShTLEXtKiEA8/zmDFjBkpKSgCg0+DJ\nsrIy6PV6v2asF154Af3798eSJUuQn5+Pu+++OxpR/Ri0PAQOoBYwQghRpkfjVFwul2quBRapPpU2\nNU1ONLvpsjSEkL4lZr+nUlpa6jctyzKef/75sAdRqwStEOsIhBASN4IWlX379vk/gOfhcDgiFkht\njD0oKpE+Za8nKJNyasxFmZShTLEXsE9lz5492LNnD2pra7FmzRrfYMXGxka4XK6oBYw1nYaHXuDg\noo4VQggJKmCfyrFjx3Ds2DG8//77mD59um++TqfDiBEjkJSUFLWQ3Yl0nwoA1NncqHfQqcWEkL4j\n6uNUCgsLUVhYCKfTicmTJ4d9w/HEqFH0szOEEHLBC7q3nDp1ajRyqJpBKyBZJyCp9a/rq4adp8Y2\nVMqknBpzUSZlKFPsRWWcSrwTeA7m5POnUB9rcMBNfSyEENJJn/g9lUj3qXR0qtEJu4fGrhBC4lfM\nxqmQzjQBLptPCCEXOioqPRCsqKixDZUyKafGXJRJGcoUe1RUeoDn6EiFEEK6Qn0qPdDsFFHT4o7q\nNgkhJJyoT0VFAv0UMSGEXOioqPRAsKKixjZUyqScGnNRJmUoU+xRUekBDc8FHQBJCCEXIupT6aEf\nz9npx7sIIXGL+lRURkv9KoQQ0gkVlR7qrl9FjW2olEk5NeaiTMpQptijotJDNKqeEEI6oz6VHjpn\nd+OcnX5jhRASn6hPRWUEGlVPCCGdUFHpoe6KihrbUCmTcmrMRZmUoUyxR0Wlh2hUPSGEdEZ9Kj3k\nlmQca3BGfbuEEBIOcd+nUlFRgYULF2LhwoXYv3+/osd4PB7Mnz8fGzdujHC60NGoekII6SwqRUWW\nZZSWlqK4uBjFxcUoLS2FkgOkTz/9FAMHDgSnwk5xnuOgCfDqqbENlTIpp8ZclEkZyhR7USkqFosF\nWVlZ0Ol00Ol0yMzMhMVi6fYxLpcLFRUVGDNmTNACtG3bNr/b0ZoWeA7l5eV+H5ry8nJUHa7ym+54\nP02re5rev/idrjpcpao8av88RULY+1QqKirw4Ycf+s279dZbsXPnTt80YwwTJkzAkCFDAq7ngw8+\nQGFhIaxWK5xOJ6ZOndrlcrHqUwGAmiYnmt30W/WEkPgTqT4VTbhXOHLkSIwcOdJvXnV1NWw2G+bN\nmwfGGFavXo3k5OSA67Db7aisrMQvf/lLbNmyJdwRw4bOACOEEH9Raf4ym82oqanxTVssFpjN5oDL\nV1ZWwuPxYMWKFfj000+xZcsWnDp1KhpRQxKoqET68LInKJNyasxFmZShTLEX9iOVrvA8jxkzZqCk\npAQAMHPmTL/7y8rKoNfrfc1Yo0eP9t3esmULXC4XcnNzoxE1JBoVnkAQTekJWnA8UG/zQIzrE9MJ\nIeFC41R6weYScbr5wvuteh5ApkmHJIP3O4koM9Tb3bA6pdgGI30WB4DnAK3AQcvz0AocBI6DVuCg\n4TmIMoNLkuH0yHCKMv3WUQAcAL3AwaDlcerQ9/HRp3IhuRD7VDQcYE7SI0EnnJ/Hc8gw6WHSSThn\nd8PR4bBFAJCg45GgFWDUCQADHB4Jdo8Mu0eiHUAcaPuk85z3c8/De1o9x3n/z3P+021FQGYAA8DA\nwBi8f6235dbbsncByPB+ELoqGlqBD/rvzdTutkuU/f6coowL7ZQaDt4ibNDw0Gl4GAQees351zFS\nHQpUVHqhuz6VUaNGRTlN98KRSS9wMCfpoQ8wQCdBJ8CoNaDJJaLJKcKoFZCgFWDQ8uA7NBXqNDz2\nfbcNV199NRweGQ5Rgt0tdSpIsdBX379gOAAa/vxOXdN6VKDhOeg0fKefe9i2bRsmTpwY0Uyhasuk\n1/B+n1OZMbhEGW5R9h3RuCSGaHzaovV50vKAQcNDrxGgFzjotUJMfqKDikovtI2qj/1uMPKMGg5Z\nyYagH1KO45Bi0CLFoFW0Xo7jkKATkKAT0D8BaHaKONPiRrga0jgAeg0Ho0aAwHOQZAZRliHKDKLs\nbbrryfvn3QFz0PLena+G936z1vCcbzseWYZLZPBI0duBKdG+CUQj8NC2HhEoORqIVzzHwagVYNSe\nP8KWZAZJ9n9XunqPunzfWnsN2PmbrbOZbx5rnU5PEJCRqPXN8z6O+VbT/ujt/GM7HNl1WCcA6AQe\nBi0PHc9Dr+WhE9RxKUfqU+mlYw0OuPtw+42W55BsENDPoI3aDsctyqhtcfXoqIUDYNB4dyAGDQ9D\nkG9rjDGIrTuX9juY7q7i0FZEOh59dUdmDG6JwSPK8MjeQuOWvG3/YmvBidSnqK2wJmgF6AUeRl1s\nvsESddm9ezf1qaiRTuBUW1R4AMkGAYlawbvzkhnk1p2oKDN4JNblN3UegEkvIKn1CCLal8nRaXjk\npBhQZ1PW+S8ASGp9ngatEFLx43zf0nsRWAGe42DQeNu3u9JW1NreI0lmkBh875fMGGQZkFjbe+h9\nXFefvI6F1Rjia0JIb1BR6aVErYCWDqPqY90m31ZM+hm1vkPiQO3fUuu3Zo/E4JEZBA4w6TVR2Ql1\n1ybPc97Of4NGxNkAzWFGDYdkvSbseWPRVyC0NpvpFGZizNvBLTEGWW69LTMIPOfXGRtJau5TURM1\nZookKiq9ZNJrcNbmifmZJRy8R02JOgHJBo3i9lXvzkyAwi6QqEs2aKDX8KhtdsEpMd9RSZJe49c+\nfqHhOA4CBwjgvIdqhKgE9amEQayuAZag4ZGg46EX+Jid6REtksxgd0tI0FFTDiHhQH0qKpao06DZ\nHd1BkDqBQ1ay/oLZwQo85xtsSQhRL3WcgxbnEnWC3wsZjWv99DeGdjZW+8v3q4UaMwHqzEWZlKFM\nsUdFJQwEnkOiLnovpUnH07d2QogqUZ9KmDQ7RdS0RL4JjAeQ388AXaCfnSSEEAUi1adCe6YwSejQ\nBBYpaQkaKiiEENWivVOYCDwHk04AzwEH9u2DluegEzjv5TA03tu9ZRA49DP27NxfNbbrqjEToM5c\nlEkZyhR71DAfRuZkPQDgjF5CUZrR7z5JZqhuciq+9EhGord4OFuvsOqRGAYk6kK6NAghhEQb9alE\nkUeScarJBU+Qy7okaHnkphg6PVarkgvGEULiH/Wp9AFagUeWSRd0AHT/hM5NXFRQCCHxgPZUEdBd\nG6pBK8CcFOgKT0CyXojI5UfU2K6rxkyAOnNRJmUoU+xRUYmBRL0GZpMOHXtHeABpPeyIJ4QQNaA+\nlRiyuURYms9fgTfNqMGAxMBHMYQQEi7Up9IHJeo1yE7RQ9N6odmeni5MCCFqQUUlAkJpQzVqBeSk\nGJBu0kb0KsNqbNdVYyZAnbkokzKUKfZonIoK6DU89DRKnhDSB0StT6WiogLr168HAMyaNQvDhw/v\ndvlz585h5cqVkCQJgwYNwl133dXlcvHcp0IIIbES17+nIssySktLsWDBAgDA008/jWHDhnX72+fr\n1q3D7NmzcfHFF0cjIiGEkDCISpuLxWJBVlYWdDoddDodMjMzYbFYAi4vyzJqa2vjtqCosQ2VMimn\nxlyUSRnKFHthb/6qqKjAhx9+6Dfv1ltvxc6dO33TjDFMmDABQ4YM6XIdVqsVJSUlMJvNsNvt+NnP\nfoaxY8d2uezmzZvDF54QQi4gcdH8NXLkSIwcOdJvXnV1NWw2G+bNmwfGGFavXo3k5OSA6zCZTEhI\nSMCjjz4KWZaxYMECjBo1Cjpd5zEckXhRCCGE9ExUmr/MZjNqamp80xaLBWazOeDyGo0GAwYMgNVq\nhUajgUZDJ6kRQkg8iNrZX3v37vWd/TVz5ky/o5mysjLo9Xq/s7jq6uqwatUq2O12jB8/HtOmTYtG\nTEIIIb0Q95dpIYQQoh404o4QQkjYUFEhhBASNqrqAQ9l1H2gZQPN/+GHH/CPf/wDQ4cOxdy5c1WT\na9WqVaiuroYsy5g/fz4yMzNjnul//ud/cPDgQfA8j/vvv18VmQDA4/HgP//zP3HzzTdj6tSpMc/0\n8ssvo7q6GjqdDtdeey0mT54c80xKr0QRrUx2ux3Lli3zPfbIkSNYu3atokyRzAUAX375JTZt2gRB\nEHDbbbcFvcpHNDJ9+umn2LJlCwwGA+bNm4esrKyoZQq0jwz1aihgKiFJEisuLmYul4u5XC62cOFC\nJsuy4mW7m88YY3v37mU7duxg//jHP1SRq+M69u3bx/7+97+rKtMPP/zAXn31VdVk+vjjj9myZcvY\nxo0bY5qpzcsvv8zOnj2rKEu0Mi1fvpxVVlaqIlPHdRw7doz97W9/i3muNo8++iiTJInZbDb2X//1\nXzHP5HQ6fTkaGxvZ888/H7VMjHW9jwxl3W1U0/wVyqj7rpatqakJOB/wjp8xmUyqydVxHQaDQfGp\n09HKdPjwYeTk5Kgik8vlQkVFBcaMGQOm8NySSH+mACjOEo1MPb0SRbQ+Txs2bFB8hBnJXG3vX25u\nLkzK8QwAAAVGSURBVA4cOIDdu3cHHIgdzUyMMYiiCI/Hg8TERFitVoiiGJVMQNf7yFCvhgKoqPmr\npaUFiYmJvkPjhIQENDc3d3n4F2hZAIrXobZcX3zxheLTpqORadGiRWhqasLSpUtVkalth2S1WhXl\niUYmo9GIl156CSaTCXfddVe3Y6+ikcloNMLtdmPZsmVBr0QRzdcJAJqbm3Hu3DkUFBQEzROtXCNH\njsTHH38MURQxZcoUVWSaPn06nnnmGRiNRthsNtjt9m4HiocrU6B9ZKjLAyrqqDeZTLDZbJgzZw5m\nz54Nm80W8MUMtGwo61BTrl27diE7O1vxUUE0Mi1ZsgQPPfQQVq5cGfNMdrsdlZWVGDVqlKIs0Xqd\n7r77bpSUlOC2227DunXrYp6p/ZUonnzySbz//vtwu90xf50A4LPPPgv56heRzFVbW4vdu3fj8ccf\nx5NPPol//etfqnitrrrqKixatAh//OMfodFoFO2/wpEpHOtuo5ojlVBG3QdaVpblbtcRalNFNHId\nOXIEP/zwQ0gnD0TjtQKAfv36QZblmGfavXs3PB4PVqxYgTNnzkCSJAwfPhy5ubkxy9SeVqtV3HQZ\n6UxtV6JIS0tTTSZJkrB7924sWbJEUZ5o5KquroYkeX/ImzGmqKBEOlN7u3fvRmFhYdQytem4jwz1\naiiAygY/Bhp139WI+0DLBpr/wQcfoLy8HFarFUOHDsX999+vily//e1v0b9/f/A8j/z8fNx9990x\nz7R8+XI0NzdDo9Hg7rvvVtx8GMlMbbZs2QKXy6W4uSKSmV588UU0NDTAaDTi3nvvRXp6eswz9fRK\nFJHMtH37dlgsFvzyl79UlCVaud577z0cPHgQsizj6quvVnz2XiQzvfLKK6iurobBYMDvfvc7xS0t\n4cgUaB8Z7N9kR6oqKoQQQuKbavpUCCGExD8qKoQQQsKGigohhJCwoaJCCCEkbKioEBJmH330EUpL\nSzvNLy0tRXV1dQwSERI9qhmnQkhfwXFcl/NnzpwZ5SSERB8VFULaOXPmDP785z9j7Nix2Lt3L/R6\nPRYtWgSHw4E1a9agvr4eZ8+exVVXXYU5c+b4HrdmzRocOHAAaWlpSElJ8RuzsmnTJnz99dc4ceIE\nFi5ciIEDB/ruW7x4Me68807fvLlz5/pG57vdbrz++us4efIkZFnGyJEj/bZJiBpRUSGkA4vFgvz8\nfNx2222+eUajEXfeeSdMJhPcbjd+97vfYerUqUhNTcX27dtx4sQJ/PnPfwYA/OUvf0FGRobvsVOm\nTMGUKVO6HFHe8aim/fTevXvR1NSEp59+OtxPkZCIoT4VQjowm80YP358p/k8z+O7777D559/Dq1W\n67u4ZWVlJSZNmgSe58HzPIYNG9ajSwJ1dPHFF6O5uRl//etf8c0338Dj8fR6nYREGhUVQhQ4fvw4\nFi1ahHPnzqGwsBDJycm+wsHzvF8RCddFKpKTk1FSUoLp06fj+PHjePLJJ8OyXkIiiYoKIQrs27cP\no0ePxo033oiEhAScOXPGd9+wYcNQVlYGxhicTifKy8sVrzcxMRGNjY0AgIMHD/rdxxgDYwy5ubmY\nPn06Ghoa4HQ6w/OECIkQ6lMhpIOuzt66+uqrsWzZMuzfvx85OTm49NJLfc1fV1xxBfbt24fHH38c\nKSkpGDBgQMAzwDqaOnUq3nrrLezZswdZWVl+jzt9+jReeeUVCIIAj8eDO+64AwaDITxPkpAIoQtK\nEkIICRtq/iKEEBI2VFQIIYSEDRUVQgghYUNFhRBCSNhQUSGEEBI2VFQIIYSEzf8PtLo3Iwi9BWAA\nAAAASUVORK5CYII=\n" | |
} | |
], | |
"prompt_number": 23 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"column = 'hijodi'\n", | |
"ninos = aguas.loc[aguas.bedad <=6, [column,'treatment', 'idhogar', 'Ypcf', 'gender', 'bedad']].dropna()\n", | |
"psmatch = ps.PropensityScoreMatch(ninos.treatment, ninos.drop('treatment', axis=1), ninos[column], algo='radius', radius=0.005)\n", | |
"psmatch.fit()\n", | |
"hogar = ninos.idhogar[psmatch.matching_algo.matched.keys()]\n", | |
"scores = psmatch.scores[psmatch.matching_algo.matched.keys()]\n", | |
"plt.scatter(scores, hogar)\n", | |
"plt.ylabel('idhogar')\n", | |
"plt.xlabel('propensity score')\n", | |
"plt.title('Propensity Score vs IdHogar\\n (presencia de diarrea, radius= 0.005)')" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "pyout", | |
"prompt_number": 17, | |
"text": [ | |
"<matplotlib.text.Text at 0x10959de10>" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEmCAYAAABFx2beAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVFUbB/DfHWDYBDeQAYZhUVEBkUxN0VzqVdTMUsMl\nwzT31DTNygUV0bIs09RyKxdcXsXM3FBLwcJcSlPc9wVhAEWQHYaZ8/7By41hhmXwAjOX5/v5+Kl7\n7p1zz3MvM8/cc+49wzHGGAghhJDnJKntBhBCCBEHSiiEEEIEQQmFEEKIICihEEIIEQQlFEIIIYKg\nhEIIIUQQlFCMWExMDMzNzeHm5ga5XI527drhwIEDtd2sGnHkyBGMGjWqzPUeHh44fvx4tbZhw4YN\naN26NRQKBdzc3LB27dpq3Z8YrF27Fm5ubrCyskLjxo2hUCigUqnKfY1cLseJEyf45e7du+OHH37g\nl2NiYuDm5lZtbSbCMa/tBpDyOTs7Iz4+HgAQFRWF4OBgXLhwAc2aNavlllWvoKAgBAUFlbme4zhU\n5yNUhw8fxoIFC3DixAk0bdoUjDHk5uZW2/7EYvz48Rg/fjx69OiBkJAQvPfeexW+huM4cBxX5jIx\nHXSFYkL69OmDZs2a4fLly3zZ/fv3IZFI8McffyAgIACurq4YOXKk1uuOHDmCdu3aQS6Xo3Xr1ti+\nfbvW+pEjR2Ly5Ml45513IJfL0bJlS0RFRWltk56ejvfeew8KhQItWrTAihUrtNZv2rQJXbp0wdq1\na9GmTRs4ODjgo48+0tomMzMTY8aMgbu7OxQKBZo3b45bt25pbfP555/Dzc0NjRs3xssvv6xzDIq/\nrT569AjDhg2Dm5sbhgwZwq8/efIkHB0dUVhYyJcdPXoUCoWinCOr69atW/D29kbTpk0BFH3I2djY\naG2jUqnwxRdfwNfXF25ubvDw8MCOHTu0ttm6dStat24NuVyO9u3b47ffftPZl0QiwaFDhxAYGAi5\nXI7//Oc/WusTExMxcOBAuLm5wdfXFzt37jQolj///BMODg5aVwpHjhyBu7u71nb79u1D+/bt+Suy\n6dOnG7Sf0vQlfMYYZs+eDWdnZ7Ro0QKfffZZpV9b0l9//YWuXbvCzc0NLVu2xPLly3W2CQsLg7u7\nO+RyOXr16oWWLVti3rx5/PrLly9j6NChaNWqFRwcHNCrVy8olUqtOhYsWICQkBAsXLgQnp6ecHFx\n0XlvkBIYMVrR0dFMLpfzy8eOHWMODg4sISGBL7t37x7jOI4FBQUxpVLJGGPs2bNn/Prz58+zRo0a\nsVOnTjHGGLt69SpzdXVlhw4d4rd59913mYeHB7ty5QpjjLHdu3czW1tblpKSwm/Tv39/NmzYMJaf\nn89SU1NZmzZtWGRkJL9+48aNzMrKii1fvpyp1Wp28+ZNZm5uzu7cucNvM3v2bBYUFMRycnIYY4zl\n5OQwjUajN/ZNmzaxLl26lHlsPDw82LFjx/Su8/b2Zvv27eOXQ0JC2Lx588qsS5/U1FTm4+PDBgwY\nwM6ePat3m+HDh2sd9/z8fK1j/8svvzA3Nzd248YNxhhjsbGxrGHDhiwuLk6rHo7jWPv27dn169cZ\nY4xlZGTw6woLC9kLL7zAPvroI6bRaNj9+/eZm5tbmW0qi6+vL/vpp5/45WHDhrGFCxfyy1lZWczC\nwkLrmJZsh6G6d+/OfvjhB53ytWvXMk9PTxYfH88YY2zNmjVMIpGwEydO8Nt069aNOTg4MA8PD+bh\n4cFkMhlzc3Pj1yckJLCGDRvy5/jRo0esdevW7LvvvuO3OXToEFMoFCw1NZWlpaUxT09Ptm7dOpab\nm8tvc/fuXXbx4kXGGGO5ubksKCiIvf/++1rtnT9/PmvUqBGbP38+02g0LDc3l6lUqiofF7GjhGLE\noqOjmbm5Of/G6tmzJzt58qTWNsUJ5fHjx3rrmDBhAvvwww+1ypYtW8b69u3LL48cOZKFhoZqbdO+\nfXu2adMmxhhjSqWScRzHkpKS+PXbt29nvXr14pc3btyokwBcXV1ZdHQ0v/z999+zFi1asMOHD/NJ\npSz66iupvITy+eefs+DgYMYYY9nZ2cze3p7du3ev3P3pk5eXxzZt2sRefPFF1rVrV3b79m1+XXx8\nPJNIJCw5ObnM1/fu3ZutWLFCq+yDDz7Q+dDiOI799ddfeus4deoUs7OzY4WFhXzZZ599xsaNG2dQ\nLN988w3r378/Y6zoC4ednR179OgRv16lUjG5XM5mzZql9SWgqspKKN27d2erV6/WKpPL5VoJpfRr\nY2JitL5YLVmyhA0YMECrjj179jAfHx9+efHixWzIkCH88pAhQ9iSJUvKbfPKlStZjx49tMrmz5/P\nXnvttXJfR/5FXV5GTiaT4d69e7h37x6OHj2KwMBAvds1atRIb/nDhw91xluaNWuGBw8elLtfd3d3\npKSkAADi4+MhkUjQsWNHeHp6wtPTEx9//DGePHlSbh0WFhbQaDT88oQJE/DZZ5/hxx9/hKenJ4YN\nG4anT5+WW0dVjBgxAlFRUcjIyMDevXvRoUMHeHh4GFyPpaUl3n33Xfz999/o168f+vTpw6978OAB\nGjRogCZNmpT5ekOOfVnnLz4+HgUFBWjWrBl/7FetWsWfm8oKCQnB8ePH8fjxY+zatQvdunWDq6sr\nv97c3BxnzpyBmZkZBg0ahBYtWhjctVYZycnJ8PT0rHA7VqLLi5Xq/nr48CHfFVms9HHt1KkTfv/9\ndyQkJCAxMRGxsbHo3Lmz1mvS0tIwffp0BAYGokuXLli3bp1WV2mxhg0bVio2QmMooqdQKHD9+nWt\nsuvXr+t8wJa+E+f27dv8uIOXlxfMzc1x7do1PrnFx8fj3LlzBrdn4MCB2LlzJx48eACJRIIZM2YY\nXEdFXFxc0LVrV0RGRmLbtm0YPXr0c9c5ZswY3L59GxkZGQCKjmtaWlq5ibmyx748TZs2hZOTE3/c\n7927h4SEBPz8888Gtb9x48bo168fIiIisGXLFowdO1ZnGxcXF4SHh+Off/7B1q1bMXLkyAq/eBhK\nLpfj7t27WmVqtVpnu/IG5RUKBW7cuKFVVvq49ujRA3379kWLFi3Qs2dPzJ07F126dNF6zejRo6FS\nqXD8+HHExsbiww8/1EledHOAYSihiNy4ceOwZcsWxMbGAgAuXbqEZcuW4f333+e3YYxhzZo1OH36\nNABgy5YtiI+PR79+/QAUfRgNHToUI0eORFpaGoCiD4GsrCyD2vLkyRNkZmbyr1epVDoD3ZXVsGFD\n/P333wCA1NRUnTuwRo0ahZUrV+LcuXMYOHCgwfWnp6fj4cOHAICCggJ8+eWX6NSpE+zt7QGAvxng\n7bff5j90VSqV1hXXhAkT8PXXX+Pq1asAgBMnTmDr1q0YN25cpdvRtm1bNG3aFNOmTeNjLCgoqNId\nZ2PHjsXy5ctx9+5d/tyWVPKDvrCwEBzHQSqVGrwfoOhvqvSHMwAMGzYM3377LVJSUlBQUIBPP/0U\nycnJel9flpCQEJw4cQJ79uwBUHTFMn/+fK2/6V27duHOnTtITk7GlStXMGHCBJ16Hj16hGbNmsHK\nyop/X5T+YlVeO4getdfbRioSHR2tNRipz71795hEImFqtbrMbQ4dOsTatm3LXFxcmK+vL4uIiNBa\nP3LkSDZhwgQ2YMAAJpPJWPPmzdlvv/2mtU1ubi6bO3cu8/b2Zm5ubqxZs2Zs48aN/PpNmzaxl19+\nWes1pcc5du/ezTw9PZlcLmfu7u5s3LhxLDMzU2+b9dVX0p49e5iLiwtzd3dngYGB/IB2sYKCAubg\n4MCmTJlSZh3lOXPmDPPz82Ourq7M3d2dvffee1o3KTBWNAi/ePFi1rJlSyaXy5mnpyf78ccfdeLw\n8fFhLi4urF27duzIkSM6+5JIJOWOW6Snp7NJkyYxLy8vplAoWMuWLVlUVFSV4mratCmbM2eO3nU9\nevRgLi4uTC6Xs/bt27MDBw4YXP+aNWuYXC5nVlZWrFGjRszNzY0VFBTw69VqNZs8eTJr0KAB8/b2\nZitXrmRubm7ljqHoex+cPn2adenShbm6ujJvb2+2bNkyrRs8oqOjmaOjI3N2dmZyuZy5ubmxDh06\nsN9//53f5o8//uD/nvv168c2btyos58FCxawkJAQg49DXcUxRim4rhs1ahTkcjnCw8NruymC8vPz\nw86dO+Hr61vbTSE1bMeOHfjtt9+wevVqWFlZgTGGTz/9FFevXsX+/ftru3miRV1eRFSX9cWx/PDD\nD2jWrBklkzpqz5498Pb2hqWlJQDg4sWLOHToELp161bLLRM3elKeiOrJ5I0bN2LhwoWQy+X46aef\nars5pJYsWbIEkydPxurVqwEU3Qzw8ccfIyQkpJZbJm7U5UUIIUQQ1OVFCCFEEJRQ9Hj06BH/vAEh\nhJiqK1eu1Oj+KKGUcvHiRQwYMKDCp8DrisTERHTv3h05OTk1sr+5c+eWO229UN555x2EhYXpXTdh\nwgTs27ev2ttQV3Xp0gWbN2/Wu+7NN9/EX3/9VcMtMsw333wDhUKBJk2aoHfv3vzzSob47bff4Ofn\nB0dHR/j7+yMmJkZrffFdac7OznBycsKQIUP4Z8CKLViwAPXr14ebmxvc3Nzg7e2ts5/w8HCsWrXK\n4PZVFSWUEp4+fYrg4GBs3LgRXl5etd0co+Di4oKYmJgqP4BoqJq6OaC8GxHWrFmD/v3710g76qLy\njv3evXvRvn37Gm5R5R04cABfffUVoqOjkZKSgtdeew2DBw82qI6UlBQMHDgQS5YswePHj7FmzRoM\nGTIEqamp/DarV6/GwYMHERcXh8TERCgUCkycOFGrHo7jMGPGDMTHxyM+Ph43b97U2de2bduwc+dO\nREdHVy1gA1FCKWHBggXo378//Pz8tMpjYmIgl8uxZs0a+Pr6wsnJCdOmTdOZMsLDwwPbtm1DUFAQ\n3Nzc0Lp1axQUFPDrK5oCHgB+/PFH/kedFAoFvv76a631jDEsWbIEzZs3h4eHByZMmIC8vDx+ffF0\n9tHR0ejcuTOcnJwQFBSE7OxsrXouXbqE1157De7u7nBzc0OXLl205t0qnibexcUFEolEa13Jtnbu\n3Bmenp5wdnbG/PnzK3GUtcXExMDPzw8uLi544403kJSUpLPNqVOn0KlTJ8jlcgQGBiIuLs7g/ezc\nuRPNmjWDm5sbRowYgaysLJ3bpV988UX+x6FK/sBTMaGmOxfi72Tp0qVo3749/1MA1fXjX927d8fy\n5csxdOhQfor+x48f8+src0xWrFgBhUIBLy8vfPjhhzrzZeXn5/Pfsi0sLHDs2DGddkgkEq0n+YuP\nc0nlvXdOnjzJz4VW+l/xE/eVsXr1aowbN46fS2zKlClISUkx6Kpq48aNePHFF/nZCgIDA/Haa6/h\nxx9/1NrPRx99BEdHR5iZmWHRokU4dOiQzvujonuqzMzMsHLlSp1kVG1q6YFKo5Ofn88aNGigd1rw\n6OhoJpFI+FlSlUol8/b2ZqtWrdLazt3dnbVo0YKfKr709N8VTQF/8+ZNZmVlxU8jz1jRtOIlLVu2\njPn5+bHExESmVqvZyJEj2aRJk/j1xbMPjxkzhj179ozl5OSwFi1asA0bNvDbxMXFsfr167OdO3fy\nZaWfAi92//59xnGc3ifxT5w4wVJTUxljjF2+fJnZ2NgYNK36kydPmJ2dHdu6dStjjLFr164xT09P\nNmrUKH6b+Ph4Zm9vz37++WfGGGNHjx5lrq6uOselPFevXmVWVlb8zMd//vkna9SoEQsLC9O7fVkz\n5Qo13fnz/p0UH4fiWQaOHTvGLCws+Gn0hdStWzcml8vZL7/8oretFR2TI0eOaE3Z/8svvzBLS0u2\nefNmvfsraxZpjuO0ZhNYsGABe+edd/jlyrx3hODq6sp++ukn9vbbbzNXV1eWmJjI+vfvr/fvpSxv\nv/02mzJlCvv++++ZnZ0di4qKYsuWLeOfyM/Pz2cSiYSdO3eOde7cmbVq1Yrl5uYyf39/rWPz2Wef\nscaNGzMPDw8WFBTEnwd9WrVqxWJjY6seeCXRFcr/3b17F8+ePdPbDwkUdf0UzxUkk8kwdepU7N69\nW2sbjuOwaNEidOzYEQBgZ2fHr0tKSsL+/fvxzTffQCqVolGjRvjkk0+wfv16fpv69evD0tISR48e\nRUJCAgDA1tZWax9r167F3Llz4ezsDIlEgs8++0zvt+m1a9fC3t4e1tbWaNeunVY/77fffou3335b\n61Ld0dFRb9ysnG9AXbt25WfJbdmyJfz8/HQmQyzPgQMH0LJlSwwfPpyvY/jw4Vr73Lp1KwIDA/Hm\nm28CAHr27Ak/Pz+Dxjh27dqF119/Hd27dwdQNBNt3759DX6g09PTE/7+/gAAKysr9OvXD9euXdPZ\nrlOnTliwYAE4joOVlRXMzbUf93revxOg6DjUq1cPQNF5aNy4sc6PlQmB4zhMnTqV7wIs2Vag4mOy\nY8cOjBkzBq1btwYA9O/fX5AurdLnrjLvHSE8efIE9evXh5mZGdRqNf/DayWv2iqSmprK11F85W9t\nbc3XkZqaCsYY6tevz/cOFO+n5NjurFmzcP36ddy7dw8hISHo1asX0tPT9e6zefPmuHDhwnNEXjn0\nYOP/Fd/VVdmxAoVCoXdSu/KmIS+eAr5YYWGh1vTnTZo0wdmzZ7FmzRq88sorsLW1xdKlS/Hqq69q\n1TNjxgx8+umnfJm1tTWUSiWcnZ317rv0NPIPHjwQZIzg5MmT+Oqrr5CSkgILCwvcvXu3wt8PLykp\nKanCmXfj4+Nx6tQprSnPc3Nz0bNnz0rvJzk5uUrT15eWlpaG8PBwnD59GhKJBBkZGWjQoIHOdpWZ\n7vx5/k6AomS8evVqZGZmQiqVIiMjw6Bjb4iy2gpUfEySk5PRoUMHwdtUegymovdObGwshg0bpreu\n5cuXY9CgQZXar6OjIzIyMrBlyxa+LC0trcwvZGXV8ezZM4wdO5af9fnzzz+Hg4MDAMDBwQEcxyEj\nIwO///671n6KtylWvDx8+HB8+eWX+P333/W+t21tbfmJWasTJZT/K/7ASUlJ0fqdiGKlx0vu3Lmj\n8xOq5Sk5BbyVlVWZ23l7e2PZsmVYtmwZ9u3bh9dffx1paWn8FBJNmzbF8uXL8corr1R636W5u7vj\n/PnzVX49UHScevfujX379qFHjx4AwF8BVJabm5vOVV7p/vWmTZvi9ddfR0RERJXbKpfL8c8//+js\nx9AbAEaPHg1XV1ccP34cVlZW2Lhxo1a/N/D8NxVU5u/kwoULGDVqFH777Te0adMGAARJmFVR0TGp\n7HT1FeE4TutLkb6ry/LeO126dEF8fLzB+y3Nz8+PvxO0uB1Xrlzhr8AqW0fpcbVLly7hhRdeAFD0\nBdDb2xsXL17kyzIyMvDo0SP4+PiUWa9KpYK1tbXedcnJyQZ9XlUVdXn9X5MmTdCpUyed2/eKJScn\nY9asWdBoNHj48CGWL19u0DQOlZ0CvuSbr6CgAJaWljAzM+PLpk+fjmnTpmn9HkRZl7nFSr/5Jk+e\njJ07d2LDhg38m7v0QGpFHj9+DI1Gg1atWkGtVmPdunU4e/asQd+SX3vtNdy6dYv/bY/o6Gj88MMP\nWh/KI0aMwLFjxxAREcF/oGRmZuq9SaAsQ4YMwaFDh3D69GkwxrBr164KJwjU94FVE9OdV+bvJCEh\nATY2NmjatCkKCgqwcOFCJCYmVtsVSnkxVXRMhg0bhs2bN+PWrVvQaDRYuXJllW4LlsvluHz5MoCi\n3+rZsWOHTvKu6L0jhClTpmD9+vW4ffs2GGP49ttvIZPJ9HbjDRkyROemGgB47733cP78ef5v8M8/\n/8TRo0e1bpefMmUKvv76a6SkpKCwsBALFy5Enz59IJPJ+G3u3r3Ln5tNmzaB4zh07dpVZ395eXm4\nePEigoKCnjv+ilBCKWH27NlYsWKF3g8rFxcXODo6omXLlggICEBwcDDefvttg+pfs2YNmjdvjo4d\nO0KhUKBly5Za39AzMjIwePBgyOVyuLm5YfXq1YiKitLqgx85ciRmzpyJoUOHQqFQwNPTE3PnztXa\nT+k3WunbNNu0aYPY2Fjs2bMHnp6eUCgUGDRokNbdYuXVBwC+vr6YPn06/P394ePjg0ePHiE4OJjv\nv66M+vXrY9u2bZg+fTqcnZ2xbt06nVswHRwcEB0djcjISHh6esLDwwOvvPIKEhMTK72fpk2bYuXK\nlRgwYAAUCgViYmLQt2/fcl+jL+Zly5bhu+++g0KhwOzZszFjxgyddggxL1pFfyd9+vRBz5494eXl\nhYCAADRq1AidO3fWe+wnTZqk90PGEOXFU9Ex6dGjB6ZOnYqOHTuiadOmePz4sVZ3XmV99dVXmDlz\nJvr06YOvvvoKvXr10lpfmfeOEPr27YuZM2eiR48eaNKkCQ4cOIBdu3bp3fbWrVt6/04dHR3x888/\nY/bs2XBwcMD48eOxY8cOre6siRMnol+/fvD394eLiwvu37+PNWvWaNUzc+ZMuLq6wsPDA/v378eR\nI0f4noySit9X5XVdCoXm8ipl2rRpMDc3x1dffcWXxcTEICQkRJBLZkJq0v79+zFp0qQqPXxHTN+Z\nM2cwefJknDhxokaeJau2MZRr165hy5Yt8PHx4buG4uLi+G9agwcP5p/3MLS8Oi1fvhxz587F+fPn\n0bZt22rfHyHV6datW9X2jAoxfuvWrUNUVFSNPZhcbQlFpVJhwIABfF+/RqNBZGQkQkNDAQCLFy+G\nn5+fQeW+vr418iT1okWLdMrEMr07qVumT59e200gtUjfIwXVqdoSir+/P/9b2kDRLaLOzs78b1Q7\nOTlBqVSCMVbp8uI6alr37t2py4AQQipQY7cNZ2VlwdbWlp8UzsbGhr8v2pDyshKKvukaCCGEVKzk\ns27Po8YSSr169ZCdnY0xY8aAMYYNGzbA3t4eGo3GoPLy0JgHIYQY5nmfSSupWm8bLnkDmUwm03rW\nISkpCTKZzODyuio2Nra2m1BtxBwbQPGZOrHHJ6Rqu0LZu3cvLly4gPT0dOTm5mLcuHF46623EB4e\nDgAIDg4GUDSLqCHlhBBCjJNonkM5duwYdXkRQoiBzp8/L9gYCj0pTwghRBCUUEyEmPtxxRwbQPGZ\nOrHHJyRKKIQQQgRBYyiEEFKH0RgKIYQQo0MJxUSIuR9XzLEBFJ+pE3t8QqKEQgghRBA0hkIIIXUY\njaEQQggxOpRQTISY+3HFHBtA8Zk6sccnJEoohBBCBEFjKIQQUofRGAohhBCjQwnFRIi5H1fMsQEU\nn6kTe3xCooRCCCFEEDSGQgghdZiQYyg19pvyhNSm9HTg6lUzcBzg66uGvX1tt4gQ8aEuLxMh5n7c\n6o4tNxf4/nsr9Otnj9des8cPP1giP79ad6lFzOcOoPjIvyihENFLTeWwapUVv7xypRWePuVqsUWE\niBMlFBPRpUuX2m5Ctanu2GxtGfz9C/nltm3VqFev5oYOxXzuAIqP/IvGUIjoNWwIrFqVg337LGBm\nBrz+egHs7Gq7VYSID12hmAgx9+PWRGxNm2rw4Yf5+OCDfHh61uyNjWI+dwDFR/5FCYUQQogg6DkU\nQgipw2guL0IIIUaHEoqJEHM/rphjAyg+Uyf2+IRECYUQQoggaAyFEELqMBpDIYQQYnRqJaGcOHEC\ns2fPRmhoKC5fvgwAiIuLw7x58zBv3jy+rLzyukbM/bhijg2g+Eyd2OMTUq08Kb9//358+eWXyMvL\nw+LFi7Fo0SJERkYiNDQUALB48WL4+flBo9HolPv6+oLjaB4mQggxNrWSUORyOa5evYr09HR4e3tD\nqVTC2dkZUqkUAODk5ASlUgnGmE55UlISnJ2da6PZtUrM8wmJOTaA4jN1Yo9PSLWSUPz9/XHw4EGo\n1Wr06tULWVlZsLW1xebNmwEANjY2yMzMBAC95WUllNjYWP7kF1+m0jIt0zIt03L5y0Kp8bu8kpOT\nERERgY8++ggAMH/+fLz33ns4ePAgxowZA8YYNmzYgEGDBkGj0WDv3r065TKZTKdesd/lVTJZio2Y\nYwMoPlMn9vhM+hcbNRoN1Go1AIAxhoKCAshkMiiVSn6bpKQkyGQyaDQaveWEEEKMT608h7Jnzx7c\nuHEDGo0GnTt3Rvfu3XHx4kXs3r0bABAcHAx/f38AKLO8NLFfoRBCSHUQ8gqFHmwkhJA6jB5srIPE\nfC+8mGMDKD5TJ/b4hEQJhRBCiCCoy4sQQuow6vIihBBidCihmAgx9+OKOTaA4jN1Yo9PSJRQCCGE\nCILGUAghpA6jMRRCCCFGhxKKiRBzP66YYwMoPlMn9viERAmFEEKIIGgMhRBC6jAaQyGEEGJ0KKGY\nCDH344o5NoDiM3Vij09IlFAIIYQIgsZQCCGkDqMxFEIIIUaHEoqJEHM/rphjAyg+Uyf2+IRECYUQ\nQoggaAyFEELqMBpDIYQQYnQooZgIMffjijk2gOIzdWKPT0iUUAghhAiCxlAIIaQOozEUQgghRocS\niokQcz+umGMDKD5TJ/b4hEQJhRBCiCBoDIUQQuowGkMhhBBidCihmAgx9+OKOTaA4jN1Yo9PSOa1\nsdPU1FSsWrUKarUazZo1w4gRIxAXF4fdu3cDAAYPHgw/Pz8AKLOcEEKIcamVhBIREYGhQ4eiRYsW\nAACNRoPIyEiEhoYCABYvXgw/Pz+95b6+vuA4rjaaXau6dOlS202oNmKODaD4TJ3Y4xNSjScUjUaD\n5ORkPpkAQFJSEpydnSGVSgEATk5OUCqVYIzplBdvSwghxLjUeELJyMhAQUEBli5dipycHPTp0wcN\nGjSAra0tNm/eDACwsbFBZmYmAOgtLyuhxMbG8t8mivs9a2v53LlbYMwSbdsqUFgIxMXFA8hAu3a+\nBtXn7v4yzp83R2ZmGry9n6JDBwW/3sLCEmZmHXHvngSOjs9gZXUFHTu2N4r4DVku2UdtDO2h+Ewv\nvgsXLkCj0fB3ehr+fj0HMzMzBAQEGGV81b0slBq/bbiwsBBhYWEICwuDRqNBaGgoJkyYgIMHD2LM\nmDFgjGH1Y3eYAAAgAElEQVTDhg0YNGgQNBoN9u7dq1Muk8l06jWm24Zv3JBg2jQbxMebYcWKbPz1\nlzk2b7ZEt24qzJmTCze3yh3y9HRg4kRbHDlSdIU2fnweFizIhaVl0fq//zZD3752KCzkYGHBEBWV\nibZt1dUVVrUp+UVAjCg+XXfvSnD7tgQODgytW6uhVgNWVlXb/7lzZvj2Wys4OWkQFKRCs2YauLtr\nDGgLsHOnFR48kGDChHwEBGi/h8R+/oS8bbjGr1DMzc3h4OCA9PR0NGrUCObm5pDJZFAqlfw2SUlJ\nkMlk0Gg0esuN3ddfW+HMGQsAQFycGb780hoAsGuXJXr0UGHIEFWl6nn2TIKjRy345X37pJg+PQ+O\njkUJ6f59CQoLi8aTVCoO9+9LTDKhiPnNCtSt+JRKDrm5gJMTg62t/u3v35dg3TopGjUCLCwYkpM5\nfPutFQYPLsAbbxQgPl6CvDwO3t5qNGyov47ERA4PHkgglQITJtjgzp2ij7LUVAkaN9Zg9uxcNGhQ\ncdtVKuCffyyQkiJB8+YarF1riTlzciGX//ulT+znT0i1Mig/fPhwrF27Fjk5OejUqRMsLS3x1ltv\nITw8HAAQHBwMAJBIJHrLjRljQF7evzcNqEt9vhcUVP6GggYNNOjbtwAHDxZdkgwYUAB7+3//0L28\nNLCwYFCpOEilDJ6elf9WRuqOhw85/PSTFPHxHIYPV+HXXy3w5AmHkSPz4ecn3N/M5csSDB5sh7Q0\nYMmSXAwaVIB69XS3S04GEhPNsG6dFGZmDF99lYO8PGDpUmtYWQGTJ9uAMQ7jxuVh9uxc2Ntrvz4h\ngcOYMbY4c8YCNjYM8+fnYvZsM6jVHOLjJcjOBjIzOTRoUHFPwI0bEkydaoucnKL35Sef5CI/X4ij\nUTfVSkJxcHDArFmztMratGmDNm3a6GxbVrmx4jhg5sxcxMWZQamUoFUrNUJC8rFtmxSdOhXi5ZcL\nK11X/fpFb8zBg1UoKMjGyy9b8t1dABAQoMbhw5m4f18CDw8N2rQxvasTQPxdCrUd3/ffW2HtWiu8\n9FIhVqyQ4MCBoj+iAwekOHYsA66uz9frXRzfmjVWyM0FFi3Kw/79Uvz9txmmTctHYSHDnTtmcHRk\nCAhQQ6PhcOBAUTeuWs1hxw5LuLhooFAUYvVqSzBW9OG+bp0V3nlHN+nduSPhewBycjhcu2YGuVwD\nBwcNJk/Ow7VrZmjYsHIxPXvG8ckEABISJJDJtF9b2+fPlNRKQhG71q01OHo0E/n5RZf+XbsWYsaM\nPNjZacq8hC+LqyuDq6sKsbFn0aSJ9h+1RAK88IIaL7xgmomEVD+VCrh40QwA4OSkwe3bZvy6lBQJ\nsrM5AMIMozZsyDB6dD4WLbLCs2cSABbIzJQAYNi3zxISCcP27Vnw9tagYUMN0tKKnqtu0UKNlBQO\nQ4bk4+efpbh61Zxvb1H7dPdTfGUOAAEBhXjnnVxERFjh66+tMWFCHswr+cmmUGjQunUhLl0yh4UF\nw6BBBWV21ZGKUUKpJk2a/PsmlUoBO7vn61oQ8zckMccG1G58FhbA1Kl5+Osvc5w9a45p0/Iwa5YZ\nGOMwfnweZLLn7/Iqjm/UqDycPGn+/2RS5P59CeTyon1oNByioizQoUMufvopCxERUsjlGvTurUJy\nMofgYDv88EM2GjZkSE/n0L69GsnJugnF11eD3buzEBlpgYAANXr3VuGXXyyweXPRqP6kSbbw9s7E\niy9W/EXLzY0hIiILd+8WXdX4+em+Rux/n0KihEKIyL36aiHWr8/GzZtmSEjgMHduHnx9C9G+faHO\n+MTz8PJiaNBAhUePcrF0qTUsLBjefz8Pn31mzW/j46NGdnZRd21AQC5ffu6cFGo1h1u3zHDlihme\nPJHg0iUJtm4tuoFFpQJycwF7+6Ir85df1u4+fvy45CxSHHJyKt9uhYJBoah8VzQpGyUUEyHmflwx\nxwbUfnzm5kVjA0uWFH+wM/z6a2aF3a9XrkiwY4clHBw0GDBAVeatuCXjk0qBbt1UaNeuEC4uGty4\nIcGECXl4/LhoPLGgAGjUSLeO5s3VkEgYvvjCCp98kou2bQuRlCRBQgKHxEQzbNpkhWvXzDBtWi5/\nY0q7dmo4OBT9/4ABBdi+XYrERDMMHpyPli2Fu9mgts+fKaGEUs0KCoDjx82xZYslAgMLERxcACcn\nUfxiADEhr79egBs3JDh3zgJTpuTC17f87qDERA6DB9eDUlk05nLrVj5WrMgpd2xCpQK2bpVi9uyi\nQYgPPsjFtGl5SEiQIDcXABiaN2ewttZ9bdu2ahw6lImHDyVwctLgrbfsoFJx8PRU47XXCvDzz0WD\n+BMn2mLu3DyEh1vjk09yMXNmHiQSoFUrDY4cyURmJgcnJ8PHKokw6PdQqtn582bo2dOOv3NlzZos\nDB5cuedQCBFSYWFRt5GdXcXb3rwpQceO9fllH59CREVllvvalBQOPXrYQ6ks6n4yM2M4dy4DCoVh\nVwt79lhgzJii+429vdVo164Q27f/e3vjp5/mYskSa7RqpcbhwxmVioeUjX4PxYSkp3N8MgGAhw/N\nytmakOpjbl65ZAIAMpkGo0fnAQA4jmHq1LwKX1uvHkNAwL9jET4+atjYGP591dNTA6m06HUPHnB4\n442C/988wPDOO/m4dKnoPTRwYL7e51xI7aEur2rWooUagYEq/PmnBRo21CAoqKBK9Yi5H1fMsQGm\nGZ+9PTBrVi4GDiyAlVVRcihLcXw2NsCiRbno2LEQeXkc3nyzgB/jMESbNmpERWX+f446DbKzgW3b\nMmFrW/RkfVycOUaMyEfbtoWoiYnHTfH81RZKKNXM1ZVhw4ZsJCRI0LAhg5cXPc1OTEOjRkCnToY9\n4+TpqcGUKc/3qHlFz1d5elKXsbGiMRRCCKnDanQM5c8//xRkR4QQQsStwoSyf//+mmgHqYCYf9da\nzLEBFJ+pE3t8QqowoUilUuTm5la0GSGEkDquwjGUPXv24NKlS+jduzeKN+U4Di+99FKNNLCyaAyF\nEEIMV6M/sKVUKuHg4IBz585plRtbQiGEEFK7KkwokyZNqol2kAqI+V54MccGUHymTuzxCYmelCeE\nECKISj2HkpaWhvT0dH4MJT093ejGK2gMhRBCDFejYyg7duxATEwMLCwsYG9vj5SUFLRq1Yo+vAkh\nhGipsMvr9OnTWLlyJfr164cRI0Zg3rx5sNY3/zSpVmK+F17MsQEUn6kTe3xCqjChODo6QiqVwtHR\nEQ8fPoRCoUBCQkJNtI0QQogJqbDLq1GjRsjKykKrVq0wf/58pKamQiTTf5kUMd9lIubYAIrP1Ik9\nPiFVeIUyatQo1KtXDzY2Npg8eTLs7Owwc+bMmmgbIYQQE1JhQik5XuLu7o5+/fqhIf2+Zo0Tcz+u\nmGMDKD5TJ/b4hFRhQklMTNQpy8jIQFxcXLU0iBBCiGmqMKFERETg0qVLePjwIV+2adMmREZG4uDB\ng9XaOPIvMffjijk2gOIzdWKPT0gVJpSnT5/i559/xpo1a3DkyBEAQGpqKubNm4czZ85UewMJIYSY\nhkpNXz9v3jyEh4fzP7bFGIOFhQW4mvhBZwJA3P24Yo4NoPhMndjjE1KlflP+ypUryM7ORkJCAi5f\nvoxnz55BqVRCpaLfdiaEEFKkwrm8Hj58iP/+97+wtLTE8OHDsX37dsjlcly7dg1eXl4YNmxYTbW1\nXDSXFyGEGE7IubwqNTlkdVCpVJg6dSr69++P3r17Iy4uDrt37wYADB48GH5+fgBQZnlplFAIIcRw\nQiaUSk9fn5eXh/z8fEF2CgC//vorvLy8wHEcGGOIjIzE3LlzMXfuXERGRgIANBqNTnldfUpfzP24\nYo4NoPhMndjjE1KFYyhPnjzBypUrkZycDMYYXFxcMGnSJDg4OFR5p/n5+YiLi0PHjh2Rl5cHpVIJ\nZ2dnSKVSAICTkxOUSiUYYzrlSUlJcHZ21ltvyR/CKf4jEMvypUuXjKo9tEzLtCyeZaFU2OX1+eef\n49VXX0WHDh0AAKdOnUJMTAxmzZpV5Z3u3bsXHh4eSE9PR15eHry8vHDq1Cl+PWMMgYGB/P5Kl3t7\ne+vUSV1ehBBiuBrt8srJyeGTCQB06tQJOTk5Vd5hTk4Orl+/joCAAL6sXr16yM7OxrBhwzB06FBk\nZ2fD3t6+zHJCCCHGp1JjKE+fPuX//8mTJ881jnH9+nWoVCqsWLECv/76K2JiYqBSqaBUKvltkpKS\nIJPJIJPJ9JbXRWLuxxVzbADFZ+rEHp+QKhxDGTx4MEJDQ9GyZUswxnDjxg1MnDixyjts27Yt3zUV\nExOD/Px8uLu746233kJ4eDgAIDg4GAAgkUj0lhNCCDE+lbptOCMjAzdv3gTHcfD29oadnV1NtM0g\nNIZCCCGGq9HflAcAe3t7tGvXTpAdEkIIEacKx1AyMzNx/Phx7N+/n/934MCBmmgbKUHM/bhijg2g\n+Eyd2OMTUoVXKIsXL4abmxuaNGlSE+0hhBBioipMKNbW1pg0aVJNtIWUQ8y/ySDm2ACKz9SJPT4h\nVdjl5eXlhYSEhJpoCyGEEBNW5hXKF198AQAoKCjAokWL4OHhobX+k08+qdaGEW0lp5URGzHHBlB8\npk7s8QmpzITSr1+/Ml9EP6xFCCGktFqbvl5o9BwKIYQYrkaeQ7l69Wq5L/Tx8RGkAYQQQsShzISy\nb98+cByH7OxspKamQqFQAADu3r0LmUyGsLCwGmskEXc/rphjAyg+Uyf2+IRUZkL59NNPAQArV67E\n9OnT0aBBAwBFEzTu3LmzZlpHCCHEZFR423BycjKfTABAJpMhOTm5WhtFdIn5G5KYYwMoPlMn9viE\nVOGDjTY2Nti1axe6d+8OxhhOnjxplJNDEkIIqV0VXqFMmTIFmZmZWLp0KZYtW4bs7Gx88MEHNdE2\nUoKY5xMSc2wAxWfqxB6fkCq8QrGzs8Po0aNroi2EEEJMGD2HQgghdViNPIdy+vRpdOzYEfv379dZ\nx3FcuU/SE0IIqXsqHEOJiopCXl6e1r/c3NyaaBspQcz9uGKODaD4TJ3Y4xNSmVcoHTt2BAA4ODjQ\nb7kTQgipUIVjKDdv3oS3t3dNtafKaAyFEEIMJ+QYSoVdXqaQTAghhNS+ChMKMQ5i7scVc2wAxWfq\nxB6fkCihEEIIEQQ9h0IIIXVYjY6hEEIIIZVBCcVEiLkfV8yxARSfqRN7fEKihEIIIUQQNIZCCCF1\nGI2hEEIIMTo1nlDWr1+PsLAwzJ8/n//lx7i4OMybNw/z5s3D5cuX+W3LKq+LxNyPK+bYAIrP1Ik9\nPiFV+HsoQhs7diwA4PLly9i3bx/GjBmDyMhIhIaGAgAWL14MPz8/aDQanXJfX19wHFfTTSaEEFIJ\ntdblZWVlBXNzcyiVSjg7O0MqlUIqlcLJyQlKpRJJSUk65UlJSeXWWfKbRGxsrKiWxRxfly5djKo9\nFB/FV5fiE1KtDcqvX78effv2RXZ2Nk6dOsWXM8YQGBgIAHrLy5pbjAblCSHEcCY/KP/333/DxcUF\nrq6uqFevHrKzszFs2DAMHToU2dnZsLe3L7O8rqqObxPGQsyxARSfqRN7fEKq8TGUu3fv4tq1awgJ\nCQEAyGQyKJVKfn1SUhJkMhk0Go3eckIIIcapxru8Jk+ejMaNG0MikUChUGDUqFG4ePEidu/eDQAI\nDg6Gv78/AJRZrg91eRFCiOGE7PKiBxsJIaQOM/kxFGI4Mffjijk2gOIzdWKPT0iUUAghhAiCurwI\nIaQOoy4vQgghRocSiokQcz+umGMDKD5TJ/b4hEQJhRBCiCBoDIUQQuowGkMhhBBidCihmAgx9+OK\nOTaA4jN1Yo9PSJRQCCGECILGUAghpA6jMRRCCCFGhxKKiRBzP66YYwMoPlMn9viERAmFEEKIIGgM\nhRBC6jAaQyGEEGJ0KKGYCDH344o5NoDiM3Vij09IlFAIIYQIgsZQCCGkDqMxFEIIIUaHEoqJEHM/\nrphjAyg+Uyf2+IRECYUQQoggaAyFEELqMBpDIYQQYnQooRiJlBQOGzZIMWWKDf74wxwajfb60v24\njBX9K11Wllu3JDh+3BzXrxvfKRd7HzXFZ9rEHp+QzGu7AaTIkSMW+PhjWwDA4cMW2L//GRiT4Kuv\nrMEYMHZsGwBAbi5w8KAFtm6VIiBAjZ49VXB21uCbb6zw5IkEH3yQh6wsoEEDoE0bNaRS4Pp1Cd54\nww6PH0tgZ8ewf38m/P3VtRkuIUSEKKEYievXzQAAQ4bkQ6HQ4K+/LLB2rRWuXi06RTduuGDNmmwk\nJkowbpwtAA6//w7Ur8/g5KTBtm1WAICzZ83x7rv5WLHCCpGRWXjllULcumWGx4+LrkwyMzlcuWJm\nVAmlS5cutd2EakXxmTaxxyck4+v/qKPefLMAnp5qODkxLF1qjevXzZGQ8O/pefTIDD/9JMWNG2YA\nOL48NVWCrKx/l9PSOFhZAYxxOHrUAgDg5KQBxxX3hzG4upbqTyOEEAFQQjES7dursXt3JhISipLD\n0aMWmDgxHxzHwHEMc+bkwMtLDTMz4KWXVACKEkWbNoVwcmIwNy9KGOPH5yM6uiiRdOhQCAAICFDj\n55+zMHNmLnbuzMKLLxbWQoRlE3sfNcVn2sQen5BMossrLi4Ou3fvBgAMHjwYfn5+tdyi6uHpyfD2\n2wX45Rcp7twxw927EuzenYnr182wfbsl4uLMMH9+DgIDVZg5Mw+ZmcDhw1LcuCHBhg3ZuHNHAoVC\nDU9PNWbMyOUTilQKdO1aiK5djSuREELExegTikajQWRkJEJDQwEAixcvhq+vLziOq+CVpsnZWY2F\nC3Pw7JkEaWkc/vrLDEuW2PLr//nHAjNn5kIi0eDBAylefLEQvXtrcOOGGe7cMUPr1moMGlRQixEY\nTux91BSfaRN7fEIy+oSSlJQEZ2dnSKVSAICTkxNfJjZqNbBtmyWePpVgxw5LAMBnn+XAyUmD5OSi\n3smePVVo1kyD4OB6iI21gFTKMGNGLlq1Krrjq2VLGh8hhNQOo08oWVlZsLW1xebNmwEANjY2yMzM\n1JtQYmNj+W8Txf2eprRsZ9cAly69hOHDC9CihRq5uRwyMoC1a7Nw9WoOXFwk6NrVAowB+flFMRcU\ncPjiC2vs338HWVnXYGVlPPFUdrlkH7UxtIfio/jqUnxCMvqpVxITE7F3716MGTMGjDFs2LABgwYN\ngkwm09pOLFOvXLhghrFjbTFiRB7q12fw8tKgbVs1zp+P1Tr558+b4Z136iE9ncOKFdl4800VLCxq\nseHPoeQXATGi+Eyb2OMTcuoVo79CkclkUCqV/HJSUpJOMhGTgAA1DhzIREEB4OTE8P+ePp0/6LZt\n1Th+PAOFhYBMxmBu9GeybGJ+swIUn6kTe3xCMvqPIYlEgrfeegvh4eEAgODg4FpuUfVzcqrcRaNM\nZtQXl4SQOsYknkNp06YNwsPDER4eDn9//9puTq0Q873wYo4NoPhMndjjE5JJJBRCCCHGz+gH5StL\nLIPyhBBSk+j3UAghhBgdSigmQsz9uGKODaD4TJ3Y4xMSJRRCCCGCoDEUQgipw2gMhRBCiNGhhGIi\nxNyPK+bYAIrP1Ik9PiFRQiGEECIIGkMhhJA6jMZQCCGEGB1KKCZCzP24Yo4NoPhMndjjExIlFEII\nIYKgMRRCCKnDaAyFEEKI0aGEYiLE3I8r5tgAis/UiT0+IVFCIYQQIggaQyGEkDqMxlAIIYQYHUoo\nJkLM/bhijg2g+Eyd2OMTEiUUQgghgqAxFEIIqcNoDIUQQojRoYRiIsTcjyvm2ACKz9SJPT4hUUIh\nhBAiCBpDIYSQOozGUAghhBgdSigmQsz9uGKODaD4TJ3Y4xMSJRRCCCGCqPExlPXr1yMxMREajQbv\nv/8+nJycAABxcXHYvXs3AGDw4MHw8/Mrt7w0GkMhhBDDCTmGYi5ILQYYO3YsAODy5cvYt28fxo4d\nC41Gg8jISISGhgIAFi9eDD8/P73lvr6+4DiupptNCCGkArXW5WVlZQVz86J8lpSUBGdnZ0ilUkil\nUjg5OUGpVOotT0pKqq0m1yox9+OKOTaA4jN1Yo9PSNXW5RUXF4dffvlFq2zEiBFwd3cHUNT11bdv\nX7i6uuLmzZs4deoUvx1jDIGBgQCgt9zb21tnf8eOHauOMAghRPSMvsvL398f/v7+etf9/fffcHFx\ngaurKwCgXr16yM7OxpgxY8AYw4YNG2Bvbw+NRqO3XB+hDgghhJCqqfExlLt37+LatWsICQnhy2Qy\nGZRKJb+clJQEmUwGjUajt5wQQojxqfG7vCZPnozGjRtDIpFAoVBg1KhRAICLFy/yd3MFBwfzVzdl\nlRNCCDEuopl6hRBCSO2iBxsJIYQIghIKIYQQQdT4oLyhKvukPABcu3YNW7ZsgY+Pj9agvyF11DQh\n4lu9ejUSExMhlUrRrVs3dO/evbqbXWmGxGfoLArGQIj4jPX8GRLbf//7X9y4cQMSiQTjxo0T3bkr\nKz5jPXeA4cdepVJh6tSp6N+/P3r37l2lOsCMmFqtZnPnzmX5+fksPz+fzZs3j2k0mjK3v3jxIjtz\n5gzbsmVLleuoSULExxhjq1evZo8fP67u5hqsqsf+0qVLbN26dc9VR00QIj7GjPP8VTW2a9eusbVr\n1z5XHTVBiPgYM85zx1jV4jt48CBbunQpi4qKqnIdRt3lZeiT8v7+/qhXr95z1VGThIivGDPCeyuq\neuwrmkXBVM9fsZLxFTO281fV2G7dusU/XybGc1cyvmLGdu4Aw+PLz89HXFwc2rVrV+U6ACPv8srK\nyoKtrS02b94MALCxsUFmZiacnZ1rtI7qIlTbrK2t8e2336JevXp49913jeZZnarGFx0djb59+z5X\nHTVBiPgA4zx/VYlt/vz5yMjIwMKFC6tcR00RIj7AOM8dYHh8UVFR6N27N9LT06tcB2Dkg/LFT9AP\nGzYMQ4cORXZ2dplPyldnHdVFqLaNGjUK4eHhGDJkCCIiIqqhpVVTlfjKmkVBLOevdHyAcZ6/qsQW\nFhaGSZMmYdWqVVWuo6YIER9gnOcOMCy+nJwcXL9+HQEBAVWuo5hRX6GU9QR9eUpfflaljpoiRHwl\nWVhY6HSl1CZD4zNkFgVjIER8JRnT+avqcW/QoAHUavVz1VETnic+jUajU25M5w4wLL7r169DpVJh\nxYoVSElJgVqthp+fH1xcXAw+Rkb/YGNZT8qfOnUKlpaWWr+BsnfvXly4cAHp6enw8fHBuHHjyq3D\nGAgR3/Lly5GWlgZra2uMHj0ajo6ONR9IGQyJz9BZFIyBEPEZ6/kzJLZvvvkGmZmZMDc3x6hRo/hu\nEbGcu7LiM9ZzBxgWX7GYmBjk5+cjKCio3DrKYvQJhRBCiGkw6jEUQgghpoMSCiGEEEFQQiGEECII\nSiiEEEIEQQmFkGoQGRmJxMREnfL79+/jn3/+qYUWEVL9KKEQUg2Cg4Ph4uKiU04JhYgZ3TZMat2C\nBQvQokUL3LhxA8+ePcMbb7yhNWvrpEmTMHDgQBw/fhwFBQWYOXMmmjRpAgA4cOAA/vzzT3AcBw8P\nD7z77ruQSqUAgJCQEPTv3x8XL15EQUEBJk6cCE9PTwBARkYG1q9fj8zMTDDG8O6778LLywtA0dVF\ndnY2nj17BqVSCWdnZ0ydOpVvz4EDB3Dy5EmYmZnBysoKc+fO5dcdOXIEJ0+exMOHDzFv3jy+TgA4\nfPgwoqKikJeXBycnJ7Ru3RrBwcH8MRg+fDiaN28OAPjyyy8RFBSENm3aVHj8ip8V4DgOeXl5+Pjj\nj+Hg4ACgaI6mHTt24Pbt2/zzL2PGjOHXbdq0CfHx8VCr1ejatSv69OnD17t69Wo4Ozvzx+/1119H\nYGAggKKHNCMiIqDRaFCvXj2MHz/eaJ6CJ7Xouaa0JEQACxYsYD/99BNjjLH09HQ2btw49uzZM379\n+++/zzZv3qzzuosXL7LQ0FCmUqkYY4xt3LiR/fe//+XXDx06lF25coUxxtg///zDPv30U37dN998\nw86fP88YYywlJYV99NFH/Lpdu3axBQsWsJycHKbRaNikSZNYUlISY4yxrKwsNnr0aFZYWFhhTHfu\n3NEpj46OZj/++KNO+R9//MHPQJyWlsamTp1abv0lffzxx+zevXt6123YsIHt2LFD77rt27eziIgI\nxhhj+fn5bPbs2ezSpUv8+lWrVvHHoSSVSsU++ugj9vTpU8YYY6dOnWLfffddpdtLxIu6vIhRKJ5H\nqH79+mjevDnu37+vtX7gwIE6r7l48SK6d+/OT3kRFBSECxcu8OstLCzg4+PD15+SkoLCwkIAwKVL\nl/DLL78gLCwM3333HVQqFbKysvjXvvjii7C2tgbHcXB0dER2djYAwNbWFi+88AI+//xzHD58GBkZ\nGQbHyvR0Crz00kuIi4tDQUEB/vjjD4N+V+PVV1/F2rVrERkZiYSEBK11Z86c0XvsgKLj95///AcA\nIJVK0aNHD63uOI7j0Lt3b1hbW2u9LiEhAU+ePMG3336LsLAwREVF4enTp5VuLxEv45l8hpD/Y4xV\nel6kkvMq6fugLk0ikfD//eSTT3Q+LCtT16RJk5Ceno6zZ89izpw5CA0N5bvgqsrCwgLt27fH6dOn\nERsbizlz5lT6tb169UK3bt1w4cIFrFixAgMHDkTHjh359frmnipWMk7GGDiOK3N9MTMzMzRp0gTz\n58+vdBtJ3UBXKMQonDp1CgDw5MkT3L17V2vsoSwBAQE4ceIEVCoVgKIpuEvOT5Sfn4/z588DAM6e\nPQsPDw8+obRv3x67du3ity3vQ7c0jUaDBg0aoFevXnB2dta5KiiPVCrFs2fP9O7zP//5D3bu3AmZ\nTGbQeIRGo4GlpSVeeuklBAYG4s6dO/y6Dh06YOfOnXxiKJkgXnjhBfz6668Aio5VdHQ0XnjhhQr3\n553zXvMAAAFxSURBVOLiApVKhbNnz/JllUnmRPzoCoUYBXNzc4SFhSEjIwOjR4+GlZUVv670t+Zi\nrVu35ge/JRIJPDw88Oabb/LrLS0tcefOHezduxdqtRqTJ0/m140YMQJbtmzBrFmzYGFhAZlMhvff\nf7/CfWo0GoSHh0OtVkOlUsHHx0dn2u/ytG7dGnv37kVoaCisra0xY8YMWFpaAij6oK5fvz569uxZ\n6foAICIiArdv3wZjDPXr18f48eP5dSEhIdi+fTvmzJkDCwsLODk58XEOGDAAGzduxJw5c6DRaNCt\nWzf4+vpq1a3vOEgkEnz88cfYuHEj9u3bB47j0LlzZ/5nY0ndRXd5kVoXFhaGkJCQSl2VGKI4aZiK\nJ0+eYOXKlQgLC6vtphBSJXSFQkSrrKsMY8MYw5IlS5CRkYGJEyfWdnMIqTK6QiGEECIIGpQnhBAi\nCEoohBBCBEEJhRBCiCAooRBCCBEEJRRCCCGCoIRCCCFEEP8DpjMmF22DKDoAAAAASUVORK5CYII=\n" | |
} | |
], | |
"prompt_number": 17 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"treatment_effect('hijodi', 'presencia de diarrea', False)\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"text": [ | |
"<matplotlib.collections.PolyCollection at 0x109b15050>" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0U2W+PvAnaZr0ZplyayJtaYuAA4UyFRmKjAIzAsKM\nRwZaYRgvKIoLdXlhGBwFofSAjIyHi7AGBMHiQWdsj1Icl4OKXPRMQaH0wsitAwPFNi0UCr0mafb7\n+4NfcwxNmp022dlNn89aXYu995u9n6Qh3+733e+ORgghQERE5EfaQAcgIqLgx2JDRER+x2JDRER+\nx2JDRER+x2JDRER+x2JDRD71z3/+M9ARVO/69ev4/vvvAx1DUSw2pIg9e/Zgzpw5ih1v7NixyMnJ\n8ftx4uLicPDgwTbrLRYLJkyYgPPnz/s9g1oIIfDMM8/g3Xff9epx//73v6HVaiFJkp+SyffXv/4V\ngwYNQlxcHJKSkrBy5Uqn7RcvXkR8fLzTT48ePTBx4kSndkVFRfjtb38LvV6PvXv3tjlOdXU1fv3r\nX+PkyZN+fT5qogt0AOoeJk2ahEmTJil2PI1GA41Go8hxXDEYDPjyyy/9fnw1eeONN3D16lVs2LAh\n0FE6bPz48SgqKkJERATOnDmDn/3sZ4iLi8PDDz8M4MYfF+Xl5U6Pueuuu/Cb3/zGad2iRYvwH//x\nH9i/f7/L98htt92Gt956CzNnzsShQ4cQFhbmvyelEjyzUdCyZcswY8YMPPvss0hKSkJSUhK2b9/u\n1Kb1r7yvvvoKI0aMQL9+/fDoo486tTl58iR+8YtfIC4uDj/5yU+wb98+p+02mw0LFy5EcnIyEhIS\nkJyc3Oav79raWjz22GNISEjA4MGDsW7dOqft77zzDsaOHYvNmzcjNTUVvXv3xu9+97s2z2nXrl0Y\nPXo04uPjERcXhxdffNFp+2uvvYb4+Hj06tULP/vZz9o83mq1YvHixUhNTUVcXBwGDhyIXbt2eXwt\nb7Zu3TrHc33hhRfQ0tLSps22bdvw4x//GAkJCcjMzMSVK1e8OoYQAi+//DJMJhMGDx7c5q9eAPjX\nv/7l+ItXq9Xi7Nmzbdrk5+fjF7/4BW677Tb07dsX8+bNa/NX/bhx47B27VrMnDkT8fHxSExMxKVL\nlxzbffE+uXr1Kp5//nkMHToUJpMJw4cPx9dff+3Va9LKbDZj+fLlWL9+fZtt169fx1NPPYWkpCT0\n798fs2bNQnV1dZt2eXl5GDFiBPr27Yvf/OY3qK+vd9q+atUqDB48GAkJCUhMTMRf/vIXl1nuuOMO\nlznk6Nu3LyIiIgAAAwcOxD333INvvvnGbft9+/ahvLwcDz30kNP6PXv2YP78+QgNDXX72NTUVIwb\nNw5r1qzpUNYuR5Bili5dKmJiYsRXX30lhBDiH//4hwgPDxelpaWONufOnRMajUZMmjRJVFZWCiGE\nuHbtmmN7XV2d6Nevn1i/fr0QQoiioiLRp08fUV5e7mjz1ltvidTUVHH16lUhhBBWq1VYrVanLPff\nf7+YNWuWsFgsoqamRqSmporc3FzH9u3bt4uwsDCxdu1aYbfbxenTp4VOpxP/+te/HG22bNkiEhMT\nxdGjRx3rLl265PK5v/POO2Ls2LEut33yySfCYrEIIYTYtm2biI6OFna73d3L2MaePXtETEyMKCkp\nEUIIkZ+fLwwGg8jJyXG0+fDDD4XJZBKnTp0SQgixZMkSMXXqVNnHEEKIzZs3i6SkJMdrvWnTJqHV\nasWBAwdcttdoNE6vV6vDhw+LixcvCiGE+P7774XJZBIffPCBU5t77rlHxMXFifz8fCGEENevX3fa\n7ov3SXNzs9izZ4/jtX711VfFkCFD5L8gP7Bq1SoxZcoUl9umTZsmHn74YWGxWERLS4tYuHChGD16\ndJvn8vLLLwubzSbq6urE2LFjxQsvvOBo89lnnwmTyeR43ex2u2hsbHR5vNmzZzu9lztj2LBhYvPm\nzW63//znP3e8xq4kJiaKvXv3ut1++PBhcdttt3UqY1fBYqOgpUuXioceeshpXUZGhli2bJljufU/\nnrsP7ffff1/cfvvtTuvmzZsnVq5c6Vj+9NNPhdFoFP/zP//T5kNKCCEqKyuFRqMRZrPZse69994T\nEydOdCxv3769TXHo16+f2Ldvn2P5tttuE3/961/becb/x9X+XLl+/brQaDTiwoULsvYrhBCPPvqo\nWLhwodO6sWPHOhWbSZMmiVWrVjmWbTabiIyMFBUVFbKPM27cOLFx40andXFxcV4Xmx+SJElkZGSI\nrKysNsdavXq128f54n1ys5KSEhESEtJuXncefPBB8fzzz7dZbzabhVarFbW1tY51NptN9O7dW3zz\nzTdCiP97Lj/8A+PTTz8V/fv3d8rWo0cP8c4774jLly93KKO3/va3v4lhw4aJ5uZml9sPHz4s+vTp\nI5qamtzuw1OxqampERqNRjQ0NHQ6r9pxzEZh4qZb0fXv3x9VVVVt2vXs2dPl48vLy1FeXo6kpCTH\nuubmZmRmZjqWJ0+ejJ07d2LHjh149tlnMWLECGzcuBGJiYmOfWi1WowePdrxmJaWFvTt27fd7KGh\noU7dPefPn8eQIUPafYwcO3bswDvvvAOr1Yrw8HAAN7oC5aqqqsKoUaPabVNeXo41a9Zg06ZNjnVh\nYWG4cOECTCaT7OP88HXvqH/+859YuXIlzp07h9DQUJw7dw633357m3bu3gNy2sh5nwghsHbtWnz0\n0UeQJMkxSN/6b2/U1dVhwIABbdafP38ePXv2RI8ePRzrdDod+vfvjwsXLuDOO+90ub+4uDinbsNh\nw4Zh79692Lp1K5YuXYqEhASsX78eI0aM8CqnXOfPn8cLL7yAXbt2wWAwuGyzcuVKPP/8850ab4mM\njARwo6uxtfsuWLHYKOzmsYSysjKnD31PBgwYgJ/85Cf46quv2m03YcIETJgwAZIk4aWXXsKcOXMc\nffbJycnQ6XQ4ceJEp/6j9O/fH4WFhUhJSenwPnbv3o3s7Gx89tlnSEpKghACISEhXu0jLi6uzdiI\n3W53Wh4wYABefPFFPP744x3OKuc4nrS0tGD8+PFYs2YNZs+eDQBtxlp8Qc775M0330ReXh4+/PBD\nxMbG4ty5cy4LhhyJiYku/2hKSEjAlStXUFNTg169egG4caXeuXPn0L9/f6e2NpvN8cF+5syZNtvv\nuOMO3HHHHQCADRs2YNq0aTh37lyH8rbHbDbjgQcewNtvv+32j6njx4/jwIED2LFjR6eOVVVVBYPB\nAKPR2Kn9dAW8QEBhH330EfLz8wEAX3zxBfbs2YOZM2fKfvzUqVNx+fJlrF692vHXf1NTE6xWq6NN\nXV0dampqANz4MLTZbE5/NfXq1QszZ87Eo48+iqtXrzra3Twg68nvfvc7LFq0yOkDzdUHTnsuXryI\nnj17Ii4uDvX19Zg/fz60Wq1XZzazZs1CTk4Ozpw5A0mS8Oabb+Lbb791avPCCy8gKyvLabC39bl7\nc5z169ejuroaVqsVL730ktfPt6mpCVeuXHEU6F27dmH37t1Ov79WN58Fe0PO++TixYswGo3o27cv\nLl++jIULFwLw7qyy1QMPPODyEnCj0Yj7778fzzzzDJqbm9HS0oLf//73GDhwIEaOHOnUdt68ebBY\nLLhy5QqWL1/udKm8zWZzzEuRJAlWq9XtmcDs2bORm5vr9XMAbrx/f/WrX2HNmjUuL2hp9dprr+Gp\np55CdHS0x32293s8cOAApk6d2qGsXQ2LjYI0Gg1++ctfIj8/H/Hx8Xjsscfw9ttvt/kLrr1Ldg0G\nA/bu3Yvi4mIMGjQIiYmJ+OlPf4rvvvvO0aakpARjxoxBfHw8BgwYALPZjLfffttpP5s2bcLAgQMx\nevRoJCQk4Pbbb0deXp5TBk+XDs+bNw9vvvkmFixYgLi4OCQkJCArK8vtc3e1v0cffRRGoxHx8fEY\nO3YsJkyYgPj4eK8mvI0fPx7PPfccRo8ejQEDBuDSpUttzhbHjx+Pt956C8899xzi4+ORlJTk9byf\nRx55BBMnTsTgwYMxbNgwxMXFoV+/fm7bu3q+t9xyC958801MnjwZAwYMwOeff44nnngCFRUVsh4v\nd7uc98mCBQtw+fJl3HrrrZg6dSqefPJJ6HS6Dk02vPfeexETE4Pdu3e32ZaTk4NbbrkFt99+O5KT\nk1FdXe34g+uHz2XChAlIS0tDcnIyRo4c6XRl4/nz5zFp0iTEx8ejf//++PLLL/Hhhx+6zHLq1CmY\nzWavnwMAPP/88zhx4gQeeughx1WFM2bMcGpz9uxZfPzxx3jhhRfc7udHP/oRYmJiUF5ejgceeAAx\nMTFtrmqz2+3YuHEjFixY0KGsXY1GdObPJ/JKVlYWysrKvJ70RtQVnD17Fr/61a+Qn5+P2267LdBx\nVG/hwoUIDw/H8uXLAx1FETyzURDrOgWz5ORkfPjhh116UqdSCgsLERUV1W0KDaDwBQIlJSWOrprM\nzMx2B5bdtT1w4AD27NmDkJAQPPjgg50anFaaUrPaiQJl8ODBWLt2baBjqF5aWhrS0tICHUNZSl1j\nbbfbxeLFi4XFYhEWi0W8+uqrQpIk2W1bLViwQNjtdtHQ0CBefvllpeITEVEnKNaNZjabYTKZoNfr\nodfrERsb63YQz1XbyspKADcuP/3uu+9QWFiIQYMGKRWfiIg6QbFutPr6ekRGRjruxBsREYG6ujqX\nE+raazt8+HB88sknaGlpaffGjq7utEpERJ79/Oc/9/k+FSs2UVFRaGhowNy5cyGEwNatW91eo+6u\nbVVVFQoLC7Fo0SIAwNKlSzF8+HDo9XqX++l2faJERJ1UWFjol/0q1o1mNBodXWHAja4yd7Nm3bW1\n2+2OGdtCCJcT4dSso3fU9Sdmkk+NuZhJHmYKPMXObLRaLWbMmIHs7GwAQEZGhmNbQUEBDAaD40zE\nXdtbb70VAwcOxGuvvQZJkjBp0iS3ZzVERKQeQTupc+/evexGIyLyUmFhoV/GbDipk4iI/I7FRkFq\n7KNlJvnUmIuZ5GGmwGOxISIiv+OYDREROXDMhoiIuiwWGwWpsY+WmeRTYy5mkoeZAo/FhoiI/I5j\nNkRE5MAxGyIi6rJYbBSkxj5aZpJPjbmYSR5mCjwWGyIi8juO2QQZIQQqr1tglZx/rSEaIEIfgnBd\nCMJCtdDy66mJyAV/jdkodtdnUkZNow31NsnltqaWFgAt0AKI0GsRFhqCcJ0WYTotNCw+RORH7EZT\nkL/7aButdlxpavHYTgJQb5VwucGGjw8cxtkrTai83owrTTY0Wu1otsn/sUu+PzFWa1+2GnMxkzzM\nFHg8swkSLZJAVX3HvkzOLoA6q4Q6q+szovZoAOhDNAjTaWH4wU9nuum0WnX+DaTGXMwkDzMFHsds\ngkTl9eYOFQt/0AII6V7/j4iCxtV/n+SYDblW22xTTaEBbnTTSeqJQ0QqwL8/FeSLPtq65hbUNFqd\nfi7X2zq8v6Kiok5n8jU1ZgLUmYuZ5GGmwOOZTRdis0uorrfCHuggRERe4phNF1Jdb0FtM0sNEflP\n/YUgGLMpKSlBXl4eACAzMxMpKSlet62pqcGGDRtgt9sxYMAAPPLII/4PrgKWFgnXWGiIqItSbMxG\nkiTk5uZi8eLFWLx4MXJzc+HupMpV21bvvvsuZs6cieXLl3e5QtOZMZsrjVb44xRUjf3GaswEqDMX\nM8nDTIGnWLExm80wmUzQ6/XQ6/WIjY2F2WyW3bayshKSJKGqqgqDBw+Wdcwffrh//fXXAV8uLS3t\n0OMbrXZ8/U2h05uzqKiIywovl50pU1UeLstfLjtTpqo8an8/+YNiYzanT59GQUGBY1kIgTFjxmDQ\noEGy2/bt2xfZ2dkwGo1obGzEfffdh1GjRrk8XjCN2ZTXNqGpJSiH1ohIZbr8mE1UVBQaGhowd+5c\nCCGwdetWREdHe9U2KioKERERWLBgASRJwpIlSzBixAjo9Xqlnobi6ppbWGiIqMtTrBvNaDSisrLS\nsWw2m2E0Gr1qq9Pp0Lt3b9TW1kKn00GnU+eV20IIXLjahHNXnH/y9x9us87TT0dvQSOXv0+dO0KN\nmQB15mImeZgp8BT7tNZqtZgxYways7MBABkZGY5tBQUFMBgMjm6v9trOnj0bmzdvRmNjI9LT01V5\nVtNotaPZ3vZsxNJih80PN64kIlI7zrPxA86HIaKuyl9jNrxdjY9JQqDOwkJDRPRDLDY+1mi1w0UP\nGgB19tEyk3xqzMVM8jBT4LHY+FiDlWc1REQ345iND0lC4NyVJrdnNkREascxmy6gvS40IqLujMXG\nh+o9dKGpsY+WmeRTYy5mkoeZAk+dsyIV1Gyz++zqsQZehUZE5FK3H7O50mjD5caOf9MlEVEw4ZiN\nn1jtUqAjEBEFPRabFuWKjRr7aJlJPjXmYiZ5mCnwunWxsUsCFl4+RkTkd916zKbJZkf5NYtCiYiI\n1I9jNn6gZBcaEVF31q2LjdK3+1djHy0zyafGXMwkDzMFXrcuNhae2RARKaJbj9mcu9IIG+sNEZED\nx2x8zGqXWGiIiBTSbYuNLQBdaGrso2Um+dSYi5nkYabAC+p7o1XVub+smXcOICJSjqJjNiUlJcjL\nywMAZGZmIiUlpUNtbTYbnnvuOdx///2YPHmyy8fv3bsXUQm3+zA9EVHw89eYjWJnNpIkITc3F0uW\nLAEArFixAkOHDoVGo/G67eeff47k5GSXjyUiIvVRbMzGbDbDZDJBr9dDr9cjNjYWZrPZ67YWiwUl\nJSUYOXIkutqFdGrso2Um+dSYi5nkYabA81hsjhw54rQsSRK2bdvm9YHq6+sRGRmJnJwc5OTkICIi\nAnV1dV63/fTTT912nd2suPj/fplFRUVOv9xALJedKVNVHi7z99ddlsvOlKkqj9rfT/7gcczm1Vdf\nxfLly53WZWVlYenSpV4dqKKiArt27cLcuXMhhMDWrVsxffp0GI1G2W2jo6Oxfv16vPTSS9i/fz+a\nm5s5ZkNE5EOKj9lcvHgRFy9eRF1dHQ4fPgwhBDQaDa5du4bLly97fSCj0YjKykrHstlsdllo2mtb\nWFgIm82GdevWobq6Gna7HSkpKYiLi/M6DxERKcdtsamsrMTRo0dRX1+Po0ePOtaHhobi6aef9vpA\nWq0WM2bMQHZ2NgAgIyPDsa2goAAGg8Ex499d27S0NEeb/fv3w2KxdKlCU1RUhBEjRgQ6hhNmkk+N\nuZhJHmYKPLfF5s4778Sdd96JTZs24amnnvLJwVJTU5GamtpmfXp6uuy2rcaNG+eTTERE5H9BfW80\njtkQEXmH90YjIqIuy2OxOXfuXJt1J06c8EuYYOfvSws7gpnkU2MuZpKHmQLPY7F5++2326x7//33\n/RKGiIiCk8dio9W2bRKkwzx+p8YrT5hJPjXmYiZ5mCnwPBabkJAQp3k1lZWVLgsQERGROx6rRkZG\nBpYvX473338f//3f/43s7GxkZmYqkS3oqLGPlpnkU2MuZpKHmQLP412fhwwZgsWLF+PYsWPQaDRY\ntmwZ+vbtq0Q2IiIKEpxnQ0REDgGdZ1NdXY1jx445lpubm30ehIiIgpfHYnPw4EGsW7cO7733HoAb\nV6KtXLnS78GCkRr7aJlJPjXmYiZ5mCnwPBabPXv2YNmyZYiKigIAfjsmERF5Tdalz6GhoY7l5uZm\nWK1Wv4YKVmq8rp6Z5FNjLmaSh5kCz+PVaAMHDsTOnTvR2NiII0eOYPfu3Rg7dqwS2YiIKEh4PLOZ\nPXs2+vTpgz59+uCrr77CxIkT8ctf/lKJbEFHjX20zCSfGnMxkzzMFHgez2y0Wi0mTpyIiRMnKpGH\niIiCkNt5NpIkdenb0nCeDRGR9xSfZ7N69WoAwJo1a3x+UCIi6l7cFptr164BAK5evapYmGCnxj5a\nZpJPjbmYSR5mCjy3YzZ9+/bF008/jevXr2PBggVO2zQaDf70pz/5PRwREQWHdu+Ndu3aNaxatQov\nvvhim++w6cjNOEtKSpCXlwcAyMzMREpKitdtt2zZgoqKCkiShPnz5yM2Ntbl4zlmQ0TkPX+N2bR7\nNVqPHj2QlpaGPn36dPpAkiQhNzcXS5YsAQCsWLECQ4cOdXlHgvbaPvHEEwCA48ePY/fu3Y5lIiJS\nL1nfZ+MLZrMZJpMJer0eer0esbGxMJvNHW4bFhYGnc7jlduqosY+WmaST425mEkeZgo8xT6t6+vr\nERkZiZycHABAREQE6urqYDKZOtR23759mDJlSrvHLC4uQmrqjVtCtP5iW28REYjlsjNlAT2+q+VW\nasmj5mX+/rructmZMlXlUev7yZ+30HE7ZvP+++9j1qxZ+OijjzBt2rROH6iiogK7du3C3LlzIYTA\n1q1bMX36dBiNRq/bHjlyBFVVVZg6darb43HMhojIe4rPszl58iQAOH2PTWcYjUZUVlY6ls1ms8tC\n46nt2bNnceLEiXYLDRERqYvbbjSr1YqNGzeiqqoK27dvd7oaTaPRYM6cOV4dSKvVYsaMGcjOzgbg\nPBZUUFAAg8GAtLQ0j23/67/+C7169UJWVhYSEhK8zhFIRUVFqrvTKzPJp8ZczCQPMwWe22Lzhz/8\nAcePH8fp06eRlJTkk4OlpqYiNTW1zfr09HTZbTds2OCTLEREpJx259kAN25bs3DhQqXy+AzHbIiI\nvKf4mE2rrlhoiIhIXbrubZ27IDVeV89M8qkxFzPJw0yBJ6vYHDx4EB988AEAQAjhuFKNiIhIDo/F\nJicnB2VlZY4qrNFosHPnTr8HC0ZqvPKEmeRTYy5mkoeZAs9jsSkrK8Njjz0Gg8GgRB4iIgpCsrrR\n7Ha7499msxmSJPktUDBTYx8tM8mnxlzMJA8zBZ7He6Pde++9yM7OxuXLl5GTk4NDhw5h3rx5SmQj\nIqIg4XGeDQCUl5ejtLQUOp0OI0aM6NB32SiN82yIiLwXkO+zaRUfH4/4+HifH5yIiLoHzrNRkBr7\naJlJPjXmYiZ5mCnwWGyIiMjvZI3ZdEUcsyEi8l7A7o1GRETUWSw2ClJjHy0zyafGXMwkDzMFHosN\nERH5HcdsiIjIQVVjNhaLxdc5iIgoiHksNrm5uU7LkiThjTfe8FugYKbGPlpmkk+NuZhJHmYKPI/F\nprS01PkBWi2ampr8FoiIiIKP2zGbY8eO4dixYzh8+DBGjx6N1mbXrl1DZWUlXn/9da8PVlJSgry8\nPABAZmYmUlJSvG4rdx8csyEi8p7i90aLiYlBcnIyiouLkZSU5Fiv1+sxbNgwrw8kSRJyc3OxZMkS\nAMCKFSswdOhQaDQaWW1TUlK82gcREamH2260xMREjBs3Dvfddx/GjRvn+BkzZgxuueUWrw9kNpth\nMpmg1+uh1+sRGxsLs9ksu21lZaVX+1AjNfbRMpN8aszFTPIwU+Apdunz6dOnUVBQ4FgWQmDMmDEY\nNGiQ7LYAZO9j7969eKmQZzxERN5YlSYC9xUDvhAVFYWGhgbMnTsXQghs3boV0dHRXrWVJEn2PgBg\nwwOD/fV0iIiCUv2Fk37Zr8dic+rUKXz22WdobGx0Wr9o0SKvDmQ0GlFZWelYNpvNMBqNXrWVJEn2\nPoiISD08FpuNGzfi17/+Nfr06eNY15EBea1WixkzZiA7OxsAkJGR4dhWUFAAg8GAtLS0dtu2t4+u\noKioCCNGjAh0DCfMJJ8aczGTPMwUeB6LTWxsLMaNG+eTg6WmpiI1NbXN+vT0dNlt3a0nIiL18niB\nwBdffIHo6GiMGjVKqUw+wXk2RETeU3yeTaucnBy0tLQgNDTUsU6j0SAnJ8fnYYiIKDh5LDbvvvuu\nEjm6BTX20TKTfGrMxUzyMFPg8ftsiIjI72RN6jx48CDMZjMyMzMhhMCpU6dw++3qHg/hmA0RkfcC\n9n02OTk5KCsrc9xaQaPRYOfOnT4PQkREwctjsSkrK8Njjz0Gg8GgRJ6gpsZ7ITGTfGrMxUzyMFPg\nyRqzsdvtjn+bzWZIkuS3QEREFHw8jtkcPHgQX375JS5fvow777wThw4dwrx581R/FQXHbIiIvBew\neTZ33303kpKSUFpaCp1Oh2XLliE2NtbnQYiIKHjJ6kaLj4/HlClTMHHiRBaaTlBjHy0zyafGXMwk\nDzMFnsczm4MHD+Lo0aOwWq1O67296zMREXVfHsdsFixYgJkzZyIyMtJp/ZAhQ/warLM4ZkNE5L2A\njdlkZGTg7NmzSExMRGtd6shXDBARUfflcczmvffew4ULF3D06FEUFhaisLAQR48eVSJb0FFjHy0z\nyafGXMwkDzMFnsczm/T0dIwfP57fiElERB3mcczm8ccfR2NjY5f7igGO2RAReS9gYzZvv/22zw9K\nRETdS4e+YuDmy6BJHjX20TKTfGrMxUzyMFPgeSw2ubm5TsuSJOFPf/qT3wIREVHw8diNVlpaioyM\nDMeyVqtFU1OT1wcqKSlBXl4eACAzMxMpKSkdar9lyxZUVFRAkiTMnz+/S93RQI33k2Mm+dSYi5nk\nYabAc1tsjh07hmPHjqGqqgrbt293zLG5du0aLBaLVweRJAm5ublYsmQJAGDFihUYOnSo2/k67bV/\n4oknAADHjx/H7t27HctERKRebrvRYmJikJycjLCwMCQlJSE5ORnJycn46U9/6igCcpnNZphMJuj1\neuj1esTGxsJsNneqfVhYGHQ6jydmqqLGPlpmkk+NuZhJHmYKPLef1omJiUhMTERzczPGjRsne4cl\nJSXIz893Wjd9+nRERkY6LpeOiIhAXV0dTCaTy33U19d7bL9v3z5MmTKl3SzFxUVITb1xqtr6i209\ndQ3EctmZsoAe39VyK7XkUfMyf39dd7nsTJmq8qj1/eTPrj2P82x8oaKiArt27cLcuXMhhMDWrVsx\nffp0txNFPbU/cuQIqqqqMHXqVLfH5DwbIiLv+WueTYcuffaW0WhEZWWlY9lsNrd7R4L22p89exYn\nTpxot9AQEZG6eDyzqaiowN/+9jdcvXoVACCEwLVr1/Daa695daDi4mLH1WUZGRkYPny4Y1tBQQEM\nBgPS0tJSq2BVAAASEklEQVQ8tn/mmWfQq1cvaLVaJCQkYM6cOS6Pp8Yzm6KiItVdgcJM8qkxFzPJ\nw0zyBewOAuvWrcPdd98NjUaD5ORknD171qlQyJWamorU1FSX29LT02W337Bhg9fHJiKiwPLYjabX\n6zF16lQMGjQIMTExePzxx3HkyBElsgUdNf4Vw0zyqTEXM8nDTIHnsdiEh4cDAPr3749Dhw6hpaUF\nNTU1fg9GRETBw2OxGT9+POrq6pCYmAgAmDdvHu69915/5wpKaryunpnkU2MuZpKHmQJP1vfZtJo/\nf75fwxARUXBSZJ5NIKjxajQiIrUL6DybgwcP4oMPPgBw49LnkydP+jwIEREFL4/FJicnB2VlZY7+\nRY1Gg507d/o9WDBSYx8tM8mnxlzMJA8zBZ7HYlNWVobHHnsMBoNBiTxERBSEZHWj2e12x7/NZjMk\nSfJboGCmxuvqmUk+NeZiJnmYKfA8Xo127733Ijs7G5cvX0ZOTg4OHTqEefPmKZGNiIiChMczm7vv\nvhuPP/44pkyZApPJhKysrG5XkX1FjX20zCSfGnMxkzzMFHiyvn0sPj4e8fHx/s5CRERByuM8m0uX\nLqFPnz5K5fEZzrMhIvJewObZvP766z4/KBERdS+y7vpMvqHGPlpmkk+NuZhJHmYKPI/FZsKECdix\nYwfq6+udfoiIiOTyOGbz9NNPt32QRqP6LzHjmA0RkfcC9k2dGzdu9PlBiYioe5F1BwHyDTX20TKT\nfGrMxUzyMFPgdajYWCwWX+cgIqIg5nHMJjc3FxkZGY5lSZKwatUqvPzyy14dqKSkBHl5eQCAzMxM\npKSkdLi9zWbDc889h/vvvx+TJ092+XiO2RAReS9g82xKS0udH6DVoqmpyauDSJKE3NxcLF68GIsX\nL0Zubi7aq3Ge2n/++edITk6GRqPxKgcREQWG22Jz7NgxbNu2DVVVVdi+fTu2bduGbdu2Yc2aNV53\no5nNZphMJuj1euj1esTGxsJsNneovcViQUlJCUaOHNluwVIjNfbRMpN8aszFTPIwU+C5vRotJiYG\nycnJKC4uRlJSkmO9Xq/HsGHD3O6wpKQE+fn5TuumT5+OyMhI5OTkAAAiIiJQV1cHk8nkch/19fVu\n23/66aeYPHkyamtrPT654uIipKbeuGlo6y+29SaigVguO1MW0OO7Wm6lljxqXubvr+sul50pU1Ue\ntb6f/HmTZY9jNn//+9/djovIVVFRgV27dmHu3LkQQmDr1q2YPn06jEajV+2jo6Oxfv16vPTSS9i/\nfz+am5s5ZkNE5EMBm2fT2UIDAEajEZWVlY5ls9nsttC0176wsBA2mw3r1q1DdXU17HY7UlJSEBcX\n1+mMRETkP7K+YqCztFotZsyYgezsbABwuroNAAoKCmAwGJCWltZu+7S0NEeb/fv3w2KxdKlCU1RU\npLrvAmIm+dSYi5nkYabAU6TYAEBqaipSU1NdbktPT/eqPQCMGzfOV9GIiMjPPI7ZdFV79+7FLe2M\n2QTlkyYi6qSAjdl0Zck9w91uq7e2oKrepmAaIqLuK6jvjRai1bj9MehCFM+jxuvqmUk+NeZiJnmY\nKfCCuti0Rx+i6b5PnohIYUE9ZtN65Zo7F2qb0NwSlE+fiKhDAnZvtGBmCOnWT5+ISDHd+tM2VKfs\n01djHy0zyafGXMwkDzMFXrcuNmE8syEiUkS3HrOx2SWcu9qsUCIiIvXjmI0fhIZoEdqtXwEiImV0\n+49avYJdaWrso2Um+dSYi5nkYabA6/bFxqDwRQJERN1Rtx6zAYDrzS2oqrf65JhB+UISUbfCe6P5\nSXSYDtFhvnkZymub0MRJokREbbAPyYeiDO0XLTX20TKTfGrMxUzyMFPgsdj4UKRe+Zt7EhF1Bd1+\nzMbXLtY2o7FFUvy4RES+wHk2XUSkgWc3REQ3Y7HxsSh9CDRutqmxj5aZ5FNjLmaSh5kCj8XGx0JD\ntAjnbQmIiJwoNmZTUlKCvLw8AEBmZiZSUlI61L6mpgYbNmyA3W7HgAED8Mgjj7h8fKDGbACgtsmG\n6gZ+5TQRdT1dep6NJEnIzc3FkiVLAAArVqzA0KFDodG47nBy1b612Lz77ruYOXMmBg8erET0DonU\nh0DTYOMkTyKi/0+R/h6z2QyTyQS9Xg+9Xo/Y2FiYzWav2ldWVkKSJFRVVam60AA3utL6RRtw6y16\np5/KM6Vt1nn66eHnCw7U2G+sxkyAOnMxkzzMFHg+P7MpKSlBfn6+07rp06cjMjISOTk5AICIiAjU\n1dXBZDK53Ed9fb3L9uHh4bBarVi9ejUaGxtx3333YdSoUW6zfP311xg7dqzj3wAUWy78pqDN9u9K\nS3FP+k+92l/6mLvQYG3CkWM33pgjRowA8H9v1M4ut/LV/oJ5uexMmary/JBa8qh1uexMmaryqPX9\n1LrsD4qM2VRUVGDXrl2YO3cuhBDYunUrpk+fDqPR6FX73r17IysrC1lZWZAkCUuWLEFWVhb0en2b\nfQRyzMbXrjbZcIljQESkgC49z8ZoNKKystKxbDab3Raa9trrdDr07t0btbW10Ol00Om6x63deoTp\noA9xd0E1EZH6KVJstFotZsyYgezsbPznf/4nMjIynLYXFBSgsLBQVvvZs2dj8+bNWLJkCdLT012e\n1ahVa9eYt7QaDXqGh/o4zQ1q7DdWYyZAnbmYSR5mCjzFTg1SU1ORmprqclt6errs9r1798Yf/vAH\nn+dTu+gwHWqbbWjmXaWJqAvivdG6kEarHRevWwIdg4iCWJeeZ0O+EaEPQbRei6abbvRp430/iUjl\neF8VBXV0zOaHjNFhSOoZ4fRzi77jv0Y19hurMROgzlzMJA8zBR6LTRDoE2VAqJZXqxGRenHMJkgE\nejxHA8Cg0yBMp4UhRIsQFj+iLun0P0s4ZkPuRehD0DNchytNLR3ehyHkRrFwc8s6l3QhWoSFaGHQ\nscAQkXvsRlOQL8Zs2tMrIhThOvkf+IYQDc6fOg5TlB5JMWHoHxOO2FsM6Bsl/6dneCgi9CE+LTT+\nfp06So25mEkeZgo8ntkEEY1Gg75RBlysbYbdxfZQLRAeGoJwnRbh+hDoQ7QoF1bcEsa3ARH5F8ds\nglBziwRJcv61ajVAWCi/spqI2ldYWMgxG5InTMfeUSJSF34qKUiNfbTMJJ8aczGTPMwUeCw2RETk\ndxyzISIiB3+N2fDMhoiI/I7FRkFq7KNlJvnUmIuZ5GGmwGOxISIiv+OYDREROXDMhoiIuiwWGwWp\nsY+WmeRTYy5mkoeZAo/FhoiI/E6xMZuSkhLk5eUBADIzM5GSktKh9gcOHMCePXsQEhKCBx980O1+\nOGZDROS9Ln1vNEmSkJubiyVLlgAAVqxYgaFDh0Lj5otTXLVvLSoff/wxXn/9dTQ3N2PFihVYsWKF\nEk+BiIg6QZFuNLPZDJPJBL1eD71ej9jYWJjNZq/aV1ZWAgDi4uLw3XffobCwEIMGDVIivs+osY+W\nmeRTYy5mkoeZAs/n3WglJSXIz893Wjd9+nR8++23jmUhBMaMGeO2WJw+fRoFBQUu23/55Zf49ttv\n0dLSgkmTJmHkyJEu97F3714fPBsiou6nS3SjDR8+HMOHD3daV1FRgYaGBsydOxdCCGzduhXR0dFu\n9xEVFeWyfVVVFQoLC7Fo0SIAwNKlSzF8+HDo9fo2+/DHi0VERB2jSDea0Wh0dIMBN7rJjEaj1+3t\ndjvs9hvfQSmEgNVq9V9oIiLyGcWuRisuLnZcXZaRkeF09lNQUACDweB09Zi79h9++CFOnToFSZJw\n1113Ydy4cUrEJyKiTgja29UQEZF6cFInERH5nSLzbDrLmwmh7tq6W3/ixAns2LEDQ4YMwUMPPaSa\nXFu2bEFFRQUkScL8+fMRGxsb8Ex/+ctfcOrUKWi1Wjz55JOqyAQANpsNzz33HO6//35Mnjw54Jk2\nbtyIiooK6PV63HPPPbK7ev2ZqaamBhs2bIDdbseAAQPwyCOPBDRTY2MjVq9e7Xjs2bNnkZOTIyuT\nP3MB8ieOK5np888/x/79+xEWFoa5c+fCZDIplsndZ6S3E/UhVM5ut4vFixcLi8UiLBaLePXVV4Uk\nSbLbtrdeCCGKi4vF4cOHxY4dO1SR6+Z9lJaWirfeektVmU6cOCE2b96smkyffPKJWL16tfj73/8e\n0EytNm7cKC5duiQri1KZ1qxZI06ePKmKTDfv49///rfYtGlTwHO1WrBggbDb7aKhoUG8/PLLAc/U\n3NzsyHHt2jXxxhtvKJZJCNefkd7su5Xqu9G8mRDqbjJoe5NEhw8fjqioKNXkunkfYWFh0OnknYAq\nlenMmTPo16+fKjJZLBaUlJRg5MiREDKHH/39ngIgO4sSmSRJQlVVFQYPHqyKTDfv49NPP5V9RurP\nXJ2ZOO7PTEIItLS0wGazITIyErW1tWhpaVEkE+D6M9LbifpAF+hGq6+vR2RkpOMUOyIiAnV1dS5P\nI921BSB7H2rLtW/fPkyZMkU1mZYuXYrr169j+fLlqsjU+kFVW1srK48SmcLDw7F+/XpERUXhkUce\nafcyfyUyhYeHw2q1YvXq1WhsbMR9992HUaNGBfx1AoC6ujrU1NSgf//+HvMolWv48OH45JNPHBPH\n1ZBp2rRpWLlyJcLDw9HQ0IDGxsZ25yr6KpO7z0hv2wNd4AKB1gmes2bNwsyZM9HQ0OD2RXbX1pt9\nqCnXkSNHcOutt8o+i1AiU1ZWFp5++mls2LAh4JkaGxtx8uRJjBgxQlYWpV6nOXPmIDs7Gw8++CDe\nfffdgGeKiopCREQEFixYgFdeeQUfffSRrDlqSryfvvjiC68nYPsz1w8njr/yyiv4+OOPVfFajR49\nGkuXLsXvf/976HQ6WZ9fvsjki323Uv2ZjTcTQt21lSSp3X142+WhRK6zZ8/ixIkTXl20oMRrBQA/\n+tGPIElSwDMVFhbCZrNh3bp1qK6uht1uR0pKCuLi4gKW6YdCQ0Nld4H6O1Pv3r1RW1uLnj17qiaT\n3W5HYWEhsrKyZOVRIldFRUWHJo4r9Z4qLCxEYmKiYpla3fwZ6e1EfaCLzLNxN8HTm8mg7tbv2rUL\nRUVFqK2txZAhQ/Dkk0+qItczzzyDXr16QavVIiEhAXPmzAl4pjVr1qCurg46nQ5z5syR3Q3pz0yt\n9u/fD4vFIrvbw5+Z1q5di6tXryI8PByPP/44+vTpE/BMly9fxpYtW9DY2Ij09HTZXbP+zHTo0CGY\nzWY88MADsrIolaujE8f9menPf/4zKioqEBYWhmeffVZ2z4wvMrn7jPT0f/JmXaLYEBFR16b6MRsi\nIur6WGyIiMjvWGyIiMjvWGyIiMjvWGyIFLJ7927k5ua2WZ+bm4uKiooAJCJSjurn2RAFC41G43J9\nRkaGwkmIlMdiQyRDdXU1/vjHP2LUqFEoLi6GwWDA0qVL0dTUhO3bt+PKlSu4dOkSRo8ejVmzZjke\nt337dnz33Xfo2bMnevTo4TTnZs+ePfjf//1fXLhwAa+++iqSk5Md25YtW4aHH37Yse6hhx5y3I3A\narVi27ZtKC8vhyRJGD58uNMxidSIxYZIJrPZjISEBDz44IOOdeHh4Xj44YcRFRUFq9WKZ599FpMn\nT0ZMTAwOHTqECxcu4I9//CMA4PXXX0ffvn0dj500aRImTZrkcgb9zWdBP1wuLi7G9evXsWLFCl8/\nRSK/4ZgNkUxGoxHp6elt1mu1Whw9ehRffvklQkNDHTcFPXnyJO6++25otVpotVoMHTq0Q7dGutng\nwYNRV1eHN998E//4xz9gs9k6vU8if2OxIeqE8+fPY+nSpaipqUFiYiKio6MdBUWr1ToVF1/drCM6\nOhrZ2dmYNm0azp8/j1deecUn+yXyJxYbok4oLS1FWloaJk6ciIiICFRXVzu2DR06FAUFBRBCoLm5\nGUVFRbL3GxkZiWvXrgEATp065bRNCAEhBOLi4jBt2jRcvXoVzc3NvnlCRH7CMRsimVxdTXbXXXdh\n9erVOH78OPr164cf//jHjm60O+64A6WlpVi0aBF69OiB3r17u70i7WaTJ0/Gzp07cezYMZhMJqfH\nff/99/jzn/+MkJAQ2Gw2/Pa3v0VYWJhvniSRn/BGnERE5HfsRiMiIr9jsSEiIr9jsSEiIr9jsSEi\nIr9jsSEiIr9jsSEiIr9jsSEiIr/7f+Cuepm7mLNSAAAAAElFTkSuQmCC\n" | |
} | |
], | |
"prompt_number": 25 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"treatment_effect('sangre', 'severidad del evento', False)\n" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"text": [ | |
"<matplotlib.collections.PolyCollection at 0x109b1a550>" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEWCAYAAACwtjr+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8FNXdP/DPzN6S3ZAbl+xKEpIoWiFcKggieKFW5YFW\nwZAI9UqNYL20pdT6U0EKKRZLlQerj60iNFhbnobHgk+t9VaQUoMKISRWQPJwN9kAuW6y2euc3x+b\nHbIkm51NdmZnd7/v1yuQmT0789lNMmfnnDNnOMYYAyGEECIjPtoBCCGExD+qbAghhMiOKhtCCCGy\no8qGEEKI7KiyIYQQIjuqbAghEfXvf/872hFUr729HV9//XW0YyiKKhsS0urVq/HKK6+ELPfhhx8i\nPz9/UPvyeDzgeR6nTp0a1HZmzJiB8vLysJ5z++23IycnBzqdDh999NGg9q8W999/P1asWKHIvhhj\nePTRR/HGG2+E9bwTJ06A53kIgiBTMun++7//G5dffjmys7ORn5+PZ599tleZEydOYPbs2cjJycGl\nl16KX/7yl73KdHV14dFHH8Ull1yCnJwcXH311QGPnz17FnfccQcOHz4s22tRG220AxD1e+aZZ6Id\nIWwcx4HjuLCes2PHDgBAfn5+2M8lwPPPP4+Wlha89NJL0Y4yYDNnzkR1dTWMRiOOHj2K6667DtnZ\n2bj33nvFMiUlJZg9ezb+9re/obm5GTfddBOGDRuGBx98UCzzwx/+EBkZGTh16hS0Wi06OzsD9nPZ\nZZfh1VdfxYIFC7B3714kJSUp9hqjhc5sFLZ27VpcccUVyM3NRV5eHrZu3RrwuNPpxE9/+lPk5+fj\n0ksvxdNPPx3wiW/x4sX44Q9/GPCchQsXYvny5QHrNm3ahCuvvBK5ubkoKSlBc3NzwOO7du1CTk4O\n3n77bVx55ZW45JJLelUqt912G3JycpCSktLnp+NTp07h29/+NrKysnDNNddg7969vcrs2LED3/72\nt3HZZZdhxIgRWLJkScDrcTgcWLx4MbKysjBu3Di8/vrrId7Bvm3YsAG5ubkoKCjA0qVL4fF4epUJ\n9Z5EAmMMa9euxejRo5GXl4eHHnoIDodDfPzZZ5/FbbfdFvCcJ598EnfffXfAur/+9a+YMGECcnJy\ncOutt/Y608vLy8PmzZtRVFSEkSNHorCwMKD5yul0Ijs7G9u2bcOLL76InJwc5ObmBmzD5XLhqaee\nwujRo5Gbm4s5c+bg2LFjA3rdVqsVq1evxosvvtjrsfb2djz00EPIz8/HqFGjsHDhQpw9e7ZXuW3b\ntmHixIkYMWIEvve976GjoyPg8VB/O36TJk3qM4cUI0aMgNFoBACMHj0aN9xwAz777LOAMidOnMAt\nt9wCAMjMzMTkyZNRV1cnPn7y5En885//xNq1a6HV+j7Pm0ymXvuaMGECbrzxRqxfv35AWWMOI4p5\n//33mcViYWfOnGGMMeb1epndbg8o88Mf/pDNnDmTtbW1sa6uLnbLLbewdevWiY9//vnnbNiwYczl\ncjHGGGttbWUmk4mdOHFCLPPWW28xi8XCjhw5whhjbMWKFWzOnDkB+9m5cyczGo3sjjvuYO3t7Ywx\nxmw2W5+577//frZixYpe66dNm8Yeeugh5vV6WWtrK5s1axbLz88PKPPpp5+Kr/frr79mFouF/fnP\nfxYff/LJJ9mUKVNYS0sL83g8bPny5YzjOHby5Ml+3slA7733HsvIyGA1NTWMMcZ27NjBDAYDKy8v\nD+s98cvLy2MfffSR5P339MILL7DCwkJWX1/PvF4vu//++9kjjzwiPt7Q0MCSk5NZY2MjY8z3O5CT\nk8N2794tltm3bx8bMmQIq6ysZIwxtnHjRjZ+/HgmCEJAxmuvvZbV1dUxxhi755572N13390rT7Cf\nHWOMLV26lN18882sra2NCYLAfvOb37D8/Pxev5NSrF27ls2ePbvPx+bNm8fuvfde5nQ6mcfjYY8/\n/ji75pprxMePHz/OOI5jTz31FHO73cxms7EZM2awpUuXimWk/O343XXXXayioiLs19CXcePGsd/9\n7ncB6/7nf/6HTZ06lb300kts6dKl7Prrrxd/nowx9oc//IF985vfZHPnzmX5+flsypQp7C9/+Uuf\n2//000/ZZZddFpGsakeVjYJqampYWloa+/3vf8/Onz/f63Gv18uMRiPbu3evuO6TTz5hl19+eUC5\nCRMmsLfeeosxxtirr77Kbr311oDHb731VrZ27Vpx2e12M5PJxOrr68V1O3fuZJmZmczpdIbMff/9\n97Ply5cHrDtx4gTTaDRiRcUYYx9++CHLy8sLuh1BEFhxcTFbtWqVuC4/P5+988474rLH4wm7srn/\n/vvZ448/HrBuxowZAZWNlPfEbzCVzRVXXMG2bt0qLtfX17OkpKSAMrfffjt74YUXGGO+g+gVV1wR\n8PiSJUvYQw891Gu7n3zySdCMr732Grv++ut75enrZ8eY72dhMpnYwYMHA9aPHz8+4MOAVHfeeSf7\n8Y9/3Gu91WplPM+z1tZWcZ3b7WbDhg1jn332GWPsQmXj9XrFMu+++y4bNWqUuBzqb0cOf/3rX9m4\nceOYw+EIWP/++++z6dOnswceeIDddNNN7O677w54fWvXrmV5eXni3/Fnn33GUlJS2L/+9a9e+2hq\namIcx7HOzk55X4wKUDOagsaNG4ePPvoIe/fuxaRJk3D99dejurpafLypqQldXV248847kZ+fj/z8\nfCxYsACtra0B23nwwQfx+9//HgBQXl4e0FYMAKdPn8b69evFbYwePRpJSUm9mmKMRiP0ev2AXovV\nakVmZiaGDBkirmN9TLP373//G3fddReuvfZa3Hjjjdi7d29AE5fVag0YVNDXNkJpbGwMOTBB6nsy\nWKdPn8ayZcvE/Vx77bVITk5GQ0ODWObBBx8UBy8E+/lVVFSI28jPz0dzczPOnDkTdL9arTZoB3tf\n/U/nzp2D3W7HZZddFrB+9OjRA3pPbDab2PzU08mTJ5GZmYm0tLSArKNGjep3P9nZ2Th37py4HOpv\nJ9JOnjyJpUuXYuvWrTAYDOL6//u//8PChQuxZcsWbNy4ER9++CFGjBiBxx57TCyTlZUFs9mMqVOn\nAgCuvvpqfPvb38Zbb73Vaz/+5rX29nbZXotaUGWjsEmTJuGVV17BiRMnUFJSgnnz5omPDRs2DEOG\nDME//vEPHD9+HMePH8fJkyfR2NgYsI277roLu3btwieffIK6ujrcfvvtAY9feumlWLNmjbiN48eP\n4/z58+IvfyRkZ2ejubkZNptNXOf1egPKeDwezJw5E7Nnz8Ynn3yCjz/+GN/61rcCKpTs7OyAfoKL\ntyE1y8V9DRdvR4n3xL+fLVu2BOynubkZFotFLDNr1iw0NTXh448/xjvvvIP77ruv1zZ+8IMfBGzj\n7NmzKC4uHlCmvirwYcOGITk5uddoqMOHD2PUqFFh7yMvL6/X7ykA5Obmorm5GU1NTeI6p9OJ48eP\n99qP2+0Wvz969Givx/v724kkq9WKuXPn4vXXX8eYMWMCHjt48CBGjhyJgoICcd2MGTNw8OBBcXnK\nlCmorq7G+fPnxXWCIPT5wa6xsREGgwFms1mGV6IuVNkoyO12i2PrBUGAy+UK+DTIcRyWLl2K0tJS\nsRxjrNennvT0dNx+++1YuHAh7rvvPrET0m/p0qVYtWpVQMdmS0vLgHP3dbAaOXIkpk+fjpUrV4Ix\nhhMnTuDpp58OKNPV1YXm5mYUFhYCALZv346333474KCycOFC/PKXv0RHRwc6OzuxePHisPMtXLgQ\n5eXlOHr0KARBwG9+8xt8/vnnAWXCfU8GcoYFAD/5yU/w4x//GEeOHBHXXXxmqtFosGjRItx77724\n5ZZbMGzYsIDHH374Yfzud7/De++9JylrfzIyMnDgwAEAvsEY/rMFnuexePFiLFu2DK2trRAEAc8/\n/zw6Ozvxne98J+z9zJ07F7t37+613mw247bbbsOjjz4Kh8MBj8eDn/3sZxg9ejQmT54cUHbJkiVw\nOp1obm7G6tWrsWjRIvGxUH87Pd11112oqKgI+zUAvoP/d7/7Xaxfvx7XXXddr8enTp2KEydOYMuW\nLRAEAY2NjdiwYQNuuukmscyYMWMwZ84c/PSnP4XX68XRo0exc+fOXh8KAeDjjz/GnDlzBpQ15kSv\nBS/xHD16lI0dO5ZlZ2ez7OxsNmfOHHb48OGAMl6vl73wwgtszJgxLCcnhxUUFLBnn32217Z2797N\neJ5nX331VZ/7evfdd9k111zDsrOzWV5eHrv99tsDHt+5cyfLycmRlDtYJ/PRo0fZ1KlT2dChQ9mM\nGTPY888/32uAwH/9138xs9nMCgoK2MMPP8x+9rOfsXvuuUd83G63swULFrC0tDQ2duxY9sc//pHx\nPB9Wnw1jjP3iF79gmZmZLC8vj61YsaJXnw1jod8Tv7y8PDZ8+HCWnZ0d9P3tz5YtW9jEiRNZTk4O\ny8vLCxgg4Ofv8/rggw/63MbevXvZzJkzxW3MmDEjoO/g4j6b3//+9+y6667rtZ0jR46wwsJCZrFY\n2Lhx48S+PsYYczqd7IknnmAFBQUsOzubzZ49mx09ejTs1+s3ZcoUtmPHjl7r29ra2IMPPshGjRrF\ncnJy2IIFC5jVahUfP378OON5npWXl7MxY8awtLQ0Vlpayjwej1hGyt+O36RJk9iLL744oNewYMEC\nZjKZxP1kZ2ezoqKigDIff/wxmz59OsvMzGTZ2dls2bJl4oAdv9bWVnb33XezkSNHsvz8/F6DDBjz\n9U9OnTo1oC8unnGM0f1sCCGDd+zYMXz3u9/Fjh07evUFkd4ef/xxJCcnY/Xq1dGOoghqRiOERERB\nQQHeeuutmL6oUylVVVVISUlJmIoGABQ9s6mpqcG2bdsA+K7C9bflh1vW7XbjRz/6EW677TbMmjVL\n3tCEEEIGTbHpagRBQEVFhXgl+po1azB27Ng+h2WGKvvBBx+goKCAphQhhJAYoVgzmtVqhcVigV6v\nh16vR1ZWFqxWa9hlnU4nampqMHny5AGPGCKEEKIsxc5sOjo6YDKZxIvZjEYjbDZbwPUHUsq+++67\nmDVrVq/hpBeLl1l7CSFEaT2HckeKYpVNSkoKOjs7UVpaCsYYNm7ciNTU1LDK2u12HD58GHPnzsWu\nXbtC7vOqq66K8KsghJD4VlVVJct2FWtGM5vNAVN2WK3WoFfNBit7+PBhuN1ubNiwAR988AF27drV\n7xQearNnz55oR+iFMkmnxlyUSRrKFH2KndnwPI/58+ejrKwMAAKm3qisrITBYBDPRIKVveqqq8Qy\nu3btEqdRJ4QQom5xe1HnRx99RM1ohBASpqqqKln6bOiiTkIIIbKjykZBamyjpUzSqTEXZZKGMkUf\nVTaEEEJkR302hBBCRNRnQwghJGZRZaMgNbbRUibp1JiLMklDmaKPKhtCCCGyoz4bQgghIuqzIYQQ\nErOoslGQGttoKZN0asxFmaShTNFHlQ0hhBDZUZ8NIYTEGIExeAUGLwMEgUFgDAIDvAIDA+D7F/Af\n3QV2YZkBYKy7XPcyGCDAt3D++KHYvp8NIYQkMtZdIYgHewYIPb4HLlQiQvfB3/+9r2Lxfe8R2IVK\nIoZQM5qC1NhGS5mkU2MuyiSNUpnaHR6cbu3CqdYunGzpwvHmLhxrsqOuyY66pi4ca/atO97iwI6P\n9+JUqwOn25w40+77qre50Njpxjm7G012D1odXrQ7veh0C3B4GFzeCxVWrKEzG0IIiQCvwHC+0wWP\nxJogPjswgqM+G0IIiYDznS40d3miHWPQOk4djv0+m5qaGmzbtg0AUFJSgsLCwrDLbt26FUeOHAHP\n81i8eDGysrLkD04IIf1wegS0xkFFIyfF+mwEQUBFRQWWL1+O5cuXo6KiAsFOqvoru2DBAqxcuRLF\nxcXYsWOHUvEjIpHbssOhxkyAOnNRJmnkztRkd0EI8znV1dWyZFErxSobq9UKi8UCvV4PvV6PrKws\nWK3WAZc9evQoRo4cqUR0QggJqtPpQYcr3Kom8SjWjNbR0QGTyYTy8nIAgNFohM1mg8ViCbvsypUr\n0d7ejtWrV/e7zz179mDGjBni9wCivtwzmxryqHF5xowZqsrTc9lPLXnUuKzGn59/XaS3P336dDTZ\n3eJZysSJEwFA8rLfQJ8v17IcFBsgUF9fj+3bt6O0tBSMMWzcuBFFRUUwm80DKltXV4eKigo8+eST\nfe6PBggQQuTW2uXG2U53tGNElFwDBBRrRjObzWhoaBCXrVZrnxWN1LLp6ekQhNg6dU3EtuyBUGMm\nQJ25KJM0cmTyCAzN9oFXNInWZ6NYMxrP85g/fz7KysoAAMXFxeJjlZWVMBgM4plIf2XXr18Pm80G\nrVaL73//+0rFJ4SQAC12t+RraghdZ0MIIWFzeAScanVEO4YsYr4ZjRBC4kVTpyvaEWIOVTYKSpS2\n7MFSYyZAnbkokzSRzNTh9KDTPfj+4kTrs6HKhhBCJBIYQ9MgBgUkMuqzIYQQiVq63DgXZ0OdL0Z9\nNoQQEkUegaE5zisaOVFlo6B4b8uOFDVmAtSZizJJE4lMzXYXvBHI4kd9NoQQQgI43F60OiJZ1SQe\n6rMhhJAQzrQ5YI/ACLRYQH02hBASBTaHJ2EqGjlRZaOgeG3LjjQ1ZgLUmYsySTPQTAJjaOqSZ1AA\n9dkQQggBALR1eeDyxmVPg+Koz4YQQvrg9go41eKI6Ai0WEB9NoQQoqBmuzvhKho5UWWjoHhqy5aT\nGjMB6sxFmaQJN1OX24s2p7xVTaL12Sh2PxtCCJELYwxugcHjZXB7BXiY73sA4DkODk6PZrsbHACe\n863jOYDr/p/nOHA91jfRTAERR302hBCRV2DwhnlIYMw3aosx3/MFxiAwQACDIKB7mcHboxzPARqe\ng4bjoOE58BwHTffB3rcM8D0eB3zTxXi8Atze7opFEOARmG/ZyxCJwcmc/zVFYFuxSq4+GzqzISQB\neAUGr8Dg6fk/C1znFnyVhHIH2tB74gBwnO9/JbIlciUjN0Urm5qaGmzbtg0AUFJSgsLCwrDLvvba\na6ivr4cgCHj44YeRlZUlf/AI2bNnD2bMmBHtGAEok3RqzHVxJpdXgMfL4Oo+A3B5Bbi8vgpFqQNp\ndXU1Jk6cGJFtMfjOnAYrkpkiRY2Z5KRYZSMIAioqKrBixQoAwJo1azB27FhwHBdW2QcffBAA8MUX\nX+Dtt98WlwlJFF6hu19CYHDxepztcMLp8VUqdEkIUSvFKhur1QqLxQK9Xg8AyMrKEtcNpGxSUhK0\n2thqBVTbp2KAMoVDqVxCd+e2R7jQ2e32XqhgPMKF5p7sywtVN0GkGj+tU6boU+xo3dHRAZPJhPLy\ncgCA0WiEzWbrs7KRUnbnzp2YPXt2v/vs2cTgH/pIy7Ss9uWGdic+2VcFxi4ckPzDZGmZlpVYloNi\no9Hq6+uxfft2lJaWgjGGjRs3oqioCGazOeyy+/btQ2NjI+bMmRN0f2ocjRYLbf5qoMZMgHK5jjfb\nIXXeRzW2+1MmadSYCYiDGQTMZjMaGhrEZavV2mdFE6rssWPHcOjQoX4rGkJilb+ZjJB4o+h1NgcP\nHhRHmBUXF2P8+PEAgMrKShgMhoAzkWBlH330UQwdOhQ8zyM3NxeLFi3qc19qPLMhJBS7y4sz7c5o\nxyAJTK4zG7qokxAVaetyo5GuXidRFPPNaCQ+5oxSghozAcrkcgvhffZT4/xalEkaNWaSU8jKZt++\nfQHLgiBg06ZNsgUiJJG5vNRhQ+JTyMrm7bffDnwCz+P06dOyBYpnahxhRZmkUyJXuDfqUuNoJsok\njRozySnodTZnzpzBmTNnYLPZ8Omnn4IxBo7j0NbWhvPnzyuZkZCE4O2eVJKQeBT0zKahoQH79+9H\nR0cH9u/fj6qqKuzfvx8nT57EI488omTGuKHGvgjKJJ3cuVxeIez5y9TY7k+ZpFFjJjkFPbO5+uqr\ncfXVV+O3v/0tHnroISUzEZKQ6KyGxDMa+kyISjTZXWiye6IdgyQ4GvpMSJxz0dQBJI6FrGyOHz/e\na92hQ4dkCRPv1NgXQZmkk7/PJvxGBjW2+1MmadSYSU4hK5vXX3+917o//elPsoQhJFEJjA2osiEk\nVoSsbHi+d5E47eaRnRqvH6FM0smZy+Ud2J001XitBmWSRo2Z5BSystFoNAHX1TQ0NPRZARFCBs5N\n/TUkzoWsNYqLi7F69Wr86U9/wh/+8AeUlZWhpKREiWxxR419EZRJOjlzuYSBVTZqbPenTNKoMZOc\nQt6pc8yYMVi+fDkOHDgAjuPw85//HCNGjFAiGyEJg66xIfGOrrMhRAVOtXbB4YnLP0USY6J6nc3Z\ns2dx4MABcdnhcEQ8CCGJijEGF1U0JM6FrGx2796NDRs24I9//CMA3x/Gs88+K3uweKTGvgjKJJ1c\nuVxehoEOD1Bjuz9lkkaNmeQUss/mvffew89//nOxguE4bsA7q6mpEW/1XFJSgsLCwrDLHjp0CFu2\nbMGYMWNwzz33DDgLIWrhpnvYkAQQsrLRaDTQ6XTissPhgMvlCntHgiCgoqICK1asAACsWbMGY8eO\n7bPy6qusv7Jxu92YN28ejhw5EnaGaFPj9SOUSTq5cg3mYk41XqtBmaRRYyY5hWxGGz16NN58803Y\n7Xbs27cPzz777ID+6KxWKywWC/R6PfR6PbKysmC1WiWXbWhoAACMHz8eKSkpYe+fELWiMxuSCEKe\n2dx111348MMPMXz4cPzzn//ELbfcMqDKpqOjAyaTCeXl5QAAo9EIm80Gi8UyqLL92bNnj5jV394e\nzeXa2lr84Ac/UE0evxkzZqgmT88sasnjX5br5+fyCmL7vf/TrtRl/7qBPl+O5YuzRTsPAGyr2IbL\nRl+mmjzV1dWoO1qH+cXzVZOn57IcFBv6XF9fj+3bt6O0tBSMMWzcuBFFRUUwm81hl/3yyy+xf//+\nfvts1Dj0uWflpxaUSTq5ctU12SEM8K+wurpadc0xlEkaNWYCojD0WRjgFc3BmM1msSkM8DWV9VXR\nSCkbq5cGqfEASpmkkyOXyysMuKIB1NnuT5mkUWMmOQVtRlu3bh2eeOIJrF+/HkuXLh30jniex/z5\n81FWVgbANw2OX2VlJQwGg3gm0l/Z7du3o7q6Gq2trejq6sLixYsHnY2QaKE50UiiCFrZtLW1AQBa\nWloitrMJEyZgwoQJvdZPmzZNctm5c+di7ty5EcukJDU2D1Em6eTI5RrMaQ3U2RRDmaRRYyY5Ba1s\nRowYgUceeQTt7e1YtmxZwGMcx+HXv/617OEIiXc0Eo0kin4HCLS1tWHt2rX4yU9+0qufRO2Tcapx\ngAAhFzvT5oDdTRUOUQ+5Bgj0O/Q5LS0NV111FYYPHx7xHRNC6MyGJA5J97MhkaHGOb8ok3SRzuX2\nChjs+AA1zq9FmaRRYyY50S03CYkS9wBvBU1ILAraZ/OnP/0JCxcuxF/+8hfMmzdP6VyDRn02RO3a\nutxo7HRHOwYhARS/qPPw4cMAEHAfG0JI5AxmAk5CYk3QysblcuHll19GY2MjNm/ejE2bNolfmzdv\nVjJj3FBjXwRlki7SuVwRGBygxnZ/yiSNGjPJKehotCeffBJffPEFvvrqK+Tn5yuZiZCEQGc2JJGE\nnIhz3bp1ePzxx5XKEzHUZ0PUzCswHGvuogECRHUU77Pxi8WKhhC1c3kFqmhIQqGhzwpSY18EZZIu\nkrlcEZqAU43t/pRJGjVmkpOkymb37t3485//DMA3vb9/pBohZGDcg5yAk5BYE7KyKS8vR11dnVgL\ncxyHN998U/Zg8UiNMxlTJukimStS09SocdZgyiSNGjPJKWRlU1dXh+9///swGAxK5CEkIThpJBpJ\nMJKa0bxer/i91WqN+F08E4Ua+yIok3SRyuUVGNwRqmzU2O5PmaRRYyY59TvrMwDcfPPNKCsrw/nz\n51FeXo69e/diyZIlSmQjJC65aSQaSUAhr7MBgNOnT6O2thZarRYTJ04c8L1sampqsG3bNgBASUkJ\nCgsLwy4rdRt0nQ1RK5vDg4YOV7RjENKnqNzPxi8nJwc5OTmD2pEgCKioqMCKFSsAAGvWrMHYsWPB\ncZyksoWFhWFtgxC1clEzNElAkiqbSLBarbBYLNDr9QCArKwscZ2Usg0NDWCMSd6GGvV1D/tOpwft\nTm+QZ8ivpuYgxo+fELJcWpIWRr1GgUR9v09qEKlcLk/kGtHUeB97yiSNGjPJSbHKpqOjAyaTCeXl\n5QAAo9EIm83WZ0URrCwAydsAgEe2fo7MzEwAQHNzMwBEddnW7sJ79v/D9yaa0fSVbzbtwklTYXN5\nxc5C/y+fUssAJO3/k30HMCKZw3XTpgK40FnuP/gmwnJtbW1Etuf2ChH9+Q3m+YmyXHe0TlV5qqur\nUXe0TlV5ei7LQVKfTSTU19dj+/btKC0tBWMMGzduRFFREcxms+SygiBI3sZHH30E19BLlXhpYalt\n7ECjzYXlN/kmN23tcuNsjNzTRMsBl6QakKRT5gwnHgmM4VhTF6ghjahVVPtsIsFsNqOhoUFctlqt\nfVYS/ZUVBEHyNgDgmlFpEUgeWd8YYcSiikNweQTotbE1W5CHAfXtLoxMM8AQY9nVwu1lVNGQhKTY\nEYPnecyfPx9lZWX4xS9+geLiYvGxyspKVFVVhSzb3zZiwZ49e5CerENBZhIO1NuiHQdA+GP9PYyh\n3uaM2NxefYnn62wi/b6p8VoNyiSNGjPJSbEzGwCYMGECJkzo3Rk9bdo0yWWDrY8l145Kx79OtmFq\nrvrOvKRwexkabE5ckmqATkNnOOGgOdFIolKsz0Zpar7Oxmpz4rEdX2Hr9wphc3pips/mYkkaLugI\ntRS9hvp2+tBoc6ItiqMPCQlFVX02TqeT5kobBPMQA4YadfjybCdy0mL3fXR4GRxdnj4fa+3yYKhR\nh/RkLV0H1YMzQhNwEhJrQraBVFRUBCwLgoDnn39etkDxrGeb//S8NPzrRGsU0/jI1W4sADhnd+Pr\ndidcYR6tMrvgAAAgAElEQVRg47XPhjEW8VtBq7HdnzJJo8ZMcgpZ2dTW1gY+gefR1dUlW6BEce2o\ndPzrRBvitBVTZHcLON3iQLuj7zOgROL2MlCXDVETxhi8AoPLI8Du9sLmlO/vNGgz2oEDB3DgwAE0\nNjZi8+bN4kGxra0NTqdTtkDxrOfV5wWZSeA44GSLA0aDouM0AihxBbMXgLXDBbvbi0yjDvoQgwrU\nOHsAMPhckbqHTU9qvAKdMkkTTibGGBweAZ0uL+zu7v9dXnR2f4nr3F54vAwewfflFRi8zP89Atb7\n/+c4QMNz0PIcNByH5cGnrByUoEe5jIwMFBQU4ODBg8jPzxfX6/V6jBs3Tp40CYTjOEwflY7Pz9hw\nw6UZ0Y6jiHanF+1OL3gO0PMctBoOOp6Hhueg4zlwnG/6fYEBAhgY8y8zxWZJ5oIshep28n0W8+UU\nGADmW2IM6F6El+5hIyuBMbR2eXCu04WmTjea7L6BNwYtjyQtD0OPr6SLvtdruIiMrGTdB3a3l8Et\nMLi9AtxeX/Op2yt0r+v9vau7gnB6LlQavsrkwrJew8Oo52HUaWDS+76MOh4mvQYZyVqMTDPAqOOh\n0/BixeGvRLQ8Bw2P7v97ruPAX/TL3XFKnjsxB61s8vLykJeXB4fDgRtvvFGWnSeai+fWmp6Xhhf+\neQq5GUlRy3T06FcYPfrykOWyhuhhjNDoMoH5BhfAy4A+LnFU65xRasylpkwegcHu8qKq9t8Ydenl\nsHd/4u5y+/63dx803V6G5O6D5IWDZvf/el5c1vC9a3inR8D5ThfO29043+n/cuF8pxstXR6kGDQY\nZtRhmEmHoUYdOI6D3S3g6GkrhqRnwukR4PAIcHZ/OXr8zwFiBaThOPEDj8B8lYjQ/cFBYP71vg8X\n4vfdj2t5DjqN72Cu1/DQaXwfpnT+77s/ZHW0tSBr+FBoNTx0PAe9hkN6shaXpBq63xe+x/uigbaP\n9yOWhGy/mTVrlhI5EtKVI0wYmWrA/9SejVqGTrseNSH27+nuaHj8hlF9HgBI7PA3x7Q5PGhzeNDa\n5en1fafLG9aZpMfLfM03AoNRpwEv6JFhPwujznewNHZ/Ak9N0sKcqoeO59Hl9jX/tHR5cKbNKTYH\ndfaooAxaHqbugy3HAU12NxweAUONOgw36TDUpEdWih5js0xi5RLs7KTa/TUmTux/wl7/GYbDI0Bg\nDBwAnvOdcfMc173sa5XgOYBD9//chXIcIHn0ZXX1WUycGHwGlHhD19lEWSzMjcYYwyt7v0Z+RhL+\n4xvDoh2HhMAYQ6vDA6vNBavNiYZ2F851usQKBfDN4p2erPX9n6RFWrIWaUk6pCVpMcSgQTgfKbS8\n73orvYaL2DB3gTE4uvshOl1eeBkw1KhDapKmV7MPiayoXWdz5MgRvP/++7Db7QHrn3jiiYiHIerE\ncRy+NzELa3eexDhLCrLTotfsRy5gjKGlK7BSabA5YbW5oNNwsAwxwDxEj5z0JFw1cohYuSRpedVf\n+8RzvgrMqNdgeLTDkIgIWdm8/PLLuOOOOzB8+IUfudp/UdVKjfdpkdrmn56swx2Fw/HGfisev3GU\nrO3HauqH6CkauQTG0NblwbnuvolznW6c6+6jONfpgoYJyMk0wTJEj1EZSZiamwpLd5t/tKjx50eZ\noi9kZZOVlUUDBAgA4OqcVByo78DfjzThO1dSc1okeAUmNm+1Otxo7fKgpcsjVixNnW4Y9RoMM/n6\nKYaZ9PjmJUMwzKTH8BQdvvp3LSZO/Ea0XwYhIYXss/nwww+RmpqKKVOmKJUpIqjPRh7tDg9+ufME\nHromG6OiOIouFgiMod3hRUuXbxhus93dXal40Nrl+77T5cWQ7n6T9GT//zoMT9FhmFGPYSYd3c6B\nKCpqfTbl5eXweDzQ6XTiOo7jxLtlksSSmqRF0bgReKOqAU/cOCquZ30WGMP5TjcabE4IIa7HdHsF\nNHd50Gy/ULG0dHmQrOORafSNlMpM1mJEih6XDzd2VyzU4U0SR8jK5o033lAiR0KI5T6bniaNHIID\nX9vwt8NNuH1s5Ltvo9GWzRhDc5cHp1ocONXqwMkWB063OZCk5btvpcChtbUN6el93xZCy3PISNYh\nNz0JEy8ZgkyjFpnJOtlvkKfGdn/KJI0aM8kpevOkkJjFcRwWTMzCs/84AZvT0+cn8yuGG3HVyCED\nHkzicAuwdvhGVlnbnbC75ZktmQFo6/LgVKsDPAeMykhCbnoSbhqdgdz0JAzpMZVQdfU5TJw4UpYc\nhMQ7SdfZ7N69G1arFSUlJWCM4ciRI/jGN9TdKUl9NvI70+Y7A7iYwIB/Hm9FepIWJRNGYJhJ3+92\nBMbwZWMnjpyzw9o9dLfD5UVWil4cvptikG901RCDBrnpyUhPps9ehES1z8br9aKurg4lJSXgOA5v\nvvkmysrKwtpRTU0Ntm3bBgAoKSlBYWH/s70FK3/o0CFs2bIFY8aMwT333BNWBhJZ2WlJQa+5uXZU\nGj6qa8a6j0/h5tGZmHlpRq/ZB7rcXuw91YaP/68VRr0G37wkBVcMz4B5iB6ZRh31ZRASR0I2KNfV\n1eH73//+oG6WJggCKioqsHz5cixfvhwVFRX9Tq3fV3k/t9uNefPmDThLNKnxPi1y3VNDw3O45fKh\n+OkNuTh0thPrPj6Jky2+W1NYbU78+WAjVr5/DCdbHLhvsgWP35CLmy8fikJzCs4c/VKVFY0a7z9C\nmaShTNEnqd3A671wG1ur1Qoh1NCci1itVlgsFuj1vuaUrKwscZ3U8g0NDbBYLBg/fjy+/PLLsPZP\nome4SY9Hr83G52fa8du9XyPTqEOz3Y3peel46lv51HRFSIII+Zd+8803o6ysDOfPn0d5eTn27t2L\nJUuWBC1fU1ODHTt2BKwrKiqCyWQSh0sbjUbYbLaglU1HR0dY5YPpOfrLf1YR7eWe2QBg6rRrka3h\nsX//PgDApEmTAUCx5e9cP1VS+Z1796PT5RFHz/g/lUlZ5jgO+qbjuH0EYLzkUlw5woR/19bgxJEz\nfZafOHFiWNtXctlvIM/neQ7jx09Q1euRY1mNPz//OrXkicTvk9zvV6RJGiBw+vRp1NbWQqvVYsKE\nCcjKygprJ/X19di+fTtKS0vBGMPGjRtRVFQEs7nvGU9Dlf/yyy+xf//+fvtsYmWAQKywu7w40043\nzZOKA6DXcEjqce8Ut8DQYHNFOxoh/ZJrgICkiwBycnIwe/Zs3HLLLWFXNABgNpvR0NAgLlut1qAV\njZTysTpRtRr7bKRmMuo1MOmUuYBTbW3ZXPdXbU2N+P3FXxoOMOl4DDVqMXKIHvmZyRiVkYysIQak\nJeuQpNPAIMMFsGp7rwDKJJUaM8kpZDPa7t27sX//frhcgZ/Iwpn1med5zJ8/XxzBVlxcHPB4ZWUl\nDAaDeCbSX/nt27ejuroara2t6OrqwuLFiyXnIIOTadShsy1xzm6StBzSDFqkGLTgOOBcEsOlQ5P7\nLCvlPiY6je/+J0JsflYiZFBCNqMtW7YMCxYsgMlkClg/ZswYWYMNFjWjyaOh3QGbS54LLNWAB5Bi\n0CDVoIVRhpmTT7d2octDtQ1Rr6hdZ1NcXIxjx44hLy9PbL6iWwwkrgyjHjZX7ws5Y51e4z+L0cg6\n35tBy6PL4w1dkJA4E/Kv6o9//CNOnTqF/fv3o6qqClVVVdi/f78S2eJOLPfZ+CVpeaTKeDU/ENiW\nreM5pBk0GGrUyvZlSdFjVHoSMvq5rTAQmZ+fNsIVmRrb/SmTNGrMJKeQZzbTpk3DzJkz++3QJ4kl\nM1mHDqcXcjSmaTjfzNIjTL5O9aQ4m17fIONN5whRs5B9Ng888ADsdnvM3WKA+mzkdbbDiVZH5JqD\njDoeQ426mLhl8WC4PAJOtMZfMySJH1Hrs3n99dcjvlMS+9KTdWh3RObsxqjjYRli6DV3WjzSa3lo\nOMBLYwRIghlQG8XFw6CJNPHQZ+On1/ARmWrG1EdFo8b3CYhcLr0mcpWqGtv9KZM0aswkp5CVTc9J\nMAHfJJm//vWvZQtEYkdGsg6WFH2vL3OKXtIgApOOhyU1Mc5oeqLbPJNEFPK3vra2NvAJPI+uri7Z\nAsUztd2lExhcJg3PYUiSttdXapIW5iEGZKcaYAxyYE3R+yqavmZ3VuP7BEQuVyRHpKnxTo+USRo1\nZpJT0HaQAwcO4MCBA2hsbMTmzZvFa2za2trgdCbOVeRk4Ix6DYx6DWwOD5q63HB1d1Sk6HmYh/Rd\n0SQCGpFGElHQj1gZGRkoKChAUlIS8vPzUVBQgIKCAkydOhUrVqxQMmPcUGNfhBKZhiRpkZuehOEm\nHVINmpAVjRrfJyByuXQRbEZTY7s/ZZJGjZnkFPTMJi8vD3l5eXA4HLjxxhsVjETiEc9xyEjWhS6Y\nAPQaGpFGEo+kWwzEIrrOhqjZmVYH7J74nWOOxK6o3mKAEBJZei3125DEErKyqa+vx6uvvornnnsO\nzz33HNauXYsnn3xSiWxxR419EZRJukjm0vGR+ZynxnZ/yiSNGjPJKeRv/IYNGzBy5EhkZmZi8uTJ\nGDp0KK677jolshEStyJ5YSchsSBkZaPX6zFnzhxcfvnlyMjIwAMPPIB9+/YpkS3uqPH6EcokXSRz\nRWpEmhqv1aBM0qgxk5xCzjeSnOy7M+GoUaPwt7/9DYWFhWhqagp7RzU1Ndi2bRsAoKSkBIWFhQMq\n/9prr6G+vh6CIODhhx8e0G2qCYk2GpFGEk3Ij1czZ86EzWZDXl4eAGDJkiW4+eabw9qJIAioqKjA\n8uXLsXz5clRUVKC/QXD9lX/wwQexcuVKFBcX4+233w4rR7SpsS+CMkkX6VyGCMwkoMZ2f8okjRoz\nyUnS/Wz8Hn744QHtxGq1wmKxQK/XAwCysrLEdQMtn5SUBK128BNBEhItei0HuyfaKQhRRsSP1jU1\nNdixY0fAuqKiIphMJvEeOEajETabLWhl09HREbL8zp07MXv27H6z7NmzR2xn938qjfZyz2xqyKPG\n5RkzZqgqT89lv0hsz83rMfJyX/Ow/1Ouvx0/lpcnTpyoqjx+1dXVqslz8VmNWvLI2Y8k6aLO3bt3\nw2q1oqSkBIwxHDlyBN/4xjck76S+vh7bt29HaWkpGGPYuHEjioqKgt79M1T5ffv2obGxEXPmzAm6\nT7qok6id3eXFmXaaZ5CoS9Qu6iwvL0ddXZ1Y83EchzfffDOsnZjNZjQ0NIjLVqu139tM91f+2LFj\nOHToUL8VjVqpsS+CMkkX6VzaCAx/VmO7P2WSRo2Z5BSyGa2urg5lZWVYtWrVgHfC8zzmz5+PsrIy\nAEBxcXHA45WVlTAYDOKZSH/lX3jhBQwdOhSrVq1Cbm4uFi1aNOBchEQTjUgjiURSn43Xe+Fe81ar\nFYIQ/pxOEyZMwIQJE/p8rOcghFDlX3rppbD3rRZqvH6EMkknRy6Dhh/UHGlqvFaDMkmjxkxyClnZ\n3HzzzSgrK8P58+dRXl6OvXv3YsmSJUpkIyTu0Yg0kihC9tlcf/31eOCBBzB79mxYLBasWrUq4Wrk\nSFFjXwRlkk6OXIOdI02N7f6USRo1ZpKTpGa0nJwc5OTkyJ2FkIRjiOCN1AhRs5BDn8+dO4fhw4cr\nlSdiaOgziQVur4DjLY5oxyBEFLWhz7/61a8ivlNCiI+ue0QaIfFO0qzPJDLU2BdBmaSTK9dg5khT\nY7s/ZZJGjZnkFPK3/Fvf+ha2bNmCjo6OgC9CSGTQXTtJIgjZZ/PII4/0fhLHqf56F+qzIbGitcuN\ns53uaMcgBIB8fTYhR6O9/PLLEd8pIeQCfQRuNUCI2tFvuYLU2BdBmaSTK5duECME1NjuT5mkUWMm\nOQ2osnE6aaZaQiJFp+FB3TYk3oWsbCoqKgKWBUHA888/L1ugeKbGOb8ok3Ry5tIP8OJONc7mQZmk\nUWMmOYX8Da+trQ18As+jq6tLtkCEJCI9XWxD4lzQyubAgQPYtGkTGhsbsXnzZmzatAmbNm3C+vXr\nqRltgNTYF0GZpJMz10AHCaix3Z8ySaPGTHIKOhotIyMDBQUFOHjwIPLz88X1er0e48aNUyQcIYmC\nRqSReBfyOpu///3vmDVrllJ5IoausyGxhOZII2oRtbnRYrGiISTW6DQ8dHRyQ+KYYr/eNTU1eOaZ\nZ/DMM8/giy++GHD5rVu3YtWqVSgrK0NjY6OckSNOjX0RlEk6uXPpBtCUpsZ2f8okjRozyUnS/WwG\nSxAEVFRUYMWKFQCANWvWYOzYseC4vkfg9Fd+wYIFAIDDhw9jx44dWLx4sRIvgRDZGTQ87O6B3yKa\nEDVT5MzGarXCYrFAr9dDr9cjKysLVqt1UOWPHj2KkSNHyh09otR4/Qhlkk7uXAOZSUCN12pQJmnU\nmElOET+zqampwY4dOwLWFRUVwWQyoby8HABgNBphs9lgsVj63EZHR0e/5VeuXIn29nasXr263yx7\n9uwRDxD+JhBapmW1LjONDlmjfSM9/U0s/gMSLdOykstyCDkaLRLq6+uxfft2lJaWgjGGjRs3oqio\nCGazecDl6+rqUFFRgSeffLLPbahxNFrPyk8tKJN0cudyewWcaHEgnD/I6upq1X1CpkzSqDETEMXR\naJFgNpvR0NAgLlut1qAVjdTy6enpEARq3ybxQ6fhMcBZawhRPUXObADg4MGD2LZtGwCguLgY48eP\nFx+rrKyEwWAIOBMJVn79+vWw2WzQarVYtGhR0KY4NZ7ZEBLKmTYHDRIYBA6+vi8dz4l9YAIDGGMQ\nGCAwBsYAb/f3QvfRT5GDYIyQ68xGscpGaVTZkFh0rsOFFocn2jEGxT/MgecADc9BwwE8x3V/z4Hj\nfAd6rwB4GQv4nrHQB34e3RWKhoNew0PL+yoXrYaHTsOBDzLKtS8XV0L+CqixwwW3EJeHxpCidvM0\nEjlq7IugTNIpkSvcEWmDaffnAGh5X4Wg432VgZbnEe6gOI7zVShcd4Wy7/PPMO2aqWEd9P28Auuu\ngABB8FdEvoO+zl+xaLigl00EE+xn58+uQeD2hhp1sHa4ws4fDrX22ciFKhtCVCSSc6T5m5QMGg46\nDQ8Nx0ErVioctGGeBUjFvJ4Bb1fDc70O/NGQmqRFu8MDu4eaNCOFmtEIURGPwHC8uSusPgT/GYpe\nw8Og5bv7K3zfa/joH7hjVZfbi9NtiTfDPTWjEZIAtDwHLQ/0NUbAf6ai13DQ8bzYZ6HX+pqXSGQl\n6zRIT9Kg1eGNdpS4QAMtFaTGOb8ok3RK5UrWamDU8UhP0mCYSYdLhuiRm56ES4cmIy8jGZekJmF4\nih7pyTpUfVapuopGjT+/gWbKSNZBE+EsfjQ3GiEkqsyphmhHIN10Gh6ZJh3OdbqjHSXmUZ8NIYT0\nQ2AMp1sdcHrj8lDZS0zPIEAIIbGK5zgMNeqiHSPmUWWjoHhqy5aTGjMB6sxFmaQZbKYUgxYp+sge\nLhOtz4YqG0IIkWCoUU8HzEGgPhtCCJHofKcLzV2xPZ1QKNRnQwghUZaRrFPdUPNYQZWNguKxLVsO\naswEqDMXZZImUpk0PIehyZG5YoT6bAghhASVlqxDspbObsJFfTaEEBImu8uLM+3xOW8a9dkQQohK\nGPUapBnkmsgmPlFlo6B4bsuOJDVmAtSZizJJI0emTOPg5k1LtD4bxeZGq6mpEW/zXFJSgsLCwgGX\nd7vd+NGPfoTbbrsNs2bNki80IYQEodPwyDTqcM5O86ZJoUhlIwgCKioqsGLFCgDAmjVrMHbs2KB3\n2wtV/oMPPkBBQUHYd+uLNjXefZIySafGXJRJGrkypSVr0e70DGjetES6SyegUDOa1WqFxWKBXq+H\nXq9HVlYWrFbrgMo7nU7U1NRg8uTJiNOxDYSQGMFzHDKTad40KSJ+ZlNTU4MdO3YErCsqKoLJZEJ5\neTkAwGg0wmazwWKx9LmNjo6OoOXfffddzJo1C62trSGz9LzvuL/NNprLtbW1+MEPfqCaPH4zZsxQ\nTZ6eWdSSx79MP7/Y/fm98sorGDdunCzbH5KkxZ7Pq2BzesSzFX9/TH/LdUfrML94vuTySi7LQZGh\nz/X19di+fTtKS0vBGMPGjRtRVFQEs9kcVvnU1FS8+OKL+H//7/9h165dcDgcQfts1Dj0uWflpxaU\nSTo15qJM0sidyeERcLrVEdbtvKurq1XZlBbTt4U2m81oaGgQl61Wa9CKpr/yVVVVcLvd2LBhA86e\nPQuv14vCwkJkZ2fLmj9S1PYHCFCmcKgxF2WSRu5MSVoe6UlatDikz5smR0VzcS82z/m+AA4c53tc\n/B++b3jO/zxfmY6Ip/JRpLLheR7z589HWVkZAKC4uDjg8crKShgMBvFMJFj5q666Siyza9cuOJ3O\nmKloCCHxLdOog83pgScCbUX+SkPLAxqOA89x0PC+6XJ4/zKH7vWcr1LhOWi4npXKwAZQ1Q8+fp9o\nBgEFJWLzwkCoMROgzlyUSRqlMrU7PLA5Pb6zBY6Df85OXqwEuO5l4MCBKky+apK4zHWX0fSoQKIx\n4raqqip2m9EIISQRpCZpkZok7bCqE9wYIrFsPKAzG0IIISK5zmxouhpCCCGyo8pGQYkyZ9RgqTET\noM5clEkayhR9VNkQQgiRHfXZEEIIEVGfDSGEkJhFlY2C1NhGS5mkU2MuyiQNZYo+qmwIIYTIjvps\nCCGEiKjPhhBCSMyiykZBamyjpUzSqTEXZZKGMkUfVTaEEEJkR302hBBCRNRnQwghJGZRZaMgNbbR\nUibp1JiLMklDmaKPKhtCCCGyU6zPpqamBtu2bQMAlJSUoLCwcEDlX375ZdTX10Ov1+OGG27AjTfe\n2Ofzqc+GEELCF9N36hQEARUVFVixYgUAYM2aNRg7dmzQW572Vd5f2XAch6VLl2LYsGFKRCeEEBIB\nijSjWa1WWCwW6PV66PV6ZGVlwWq1hlW+oaFBfDxWB9CpsY2WMkmnxlyUSRrKFH0Rb0arqanBjh07\nAtYVFRXh888/F5cZY7j22mtx+eWX97mNr776CpWVlX2W37x5M44dO4aUlBTcd999MJvNfW7jo48+\nisCrIYSQxBMTzWjjx4/H+PHjA9bV19ejs7MTpaWlYIxh48aNSE1NDbqNlJSUoOUXLVoEADhx4gTe\neOMNPP74431uQ443ixBCyMAo0oxmNpsDmsGsVmvQMxKp5XU6HbRaRbqcCCGEDJJio9EOHjwoji4r\nLi4OOPuprKyEwWAIGD0WrPx//ud/oqWlBcnJyXjggQcwfPhwJeITQggZhLidroYQQoh60EWdhBBC\nZBcTnR7hXBAarGyw9YcOHcKWLVswZswY3HPPParJ9dprr6G+vh6CIODhhx9GVlZW1DNt3boVR44c\nAc/zWLx4sSoyAYDb7caPfvQj3HbbbZg1a1bUM0m98FjJTE1NTXjppZfg9Xpx6aWX4r777otqJrvd\njnXr1onPPXbsGMrLyyVlkjMXAHz88cd47733oNFocOedd4a8AF2JTB988AF27dqFpKQklJaWwmKx\nKJYp2DEy3Av1wVTO6/Wy5cuXM6fTyZxOJ3vmmWeYIAiSy/a3njHGDh48yD799FO2ZcsWVeS6eBu1\ntbXs1VdfVVWmQ4cOsd/97neqyfTOO++wdevWsb///e9RzeT38ssvs3PnzknKolSm9evXs8OHD6si\n08XbOHHiBPvtb38b9Vx+y5YtY16vl3V2drKnnnoq6pkcDoeYo62tjT3//POKZWKs72NkONv2U30z\nWjgXhAa7GLS/i0THjx+PlJQU1eS6eBtJSUmSR90pleno0aMYOXKkKjI5nU7U1NRg8uTJki/2lft3\nCgj/wmM5MwmCgMbGRlxxxRWqyHTxNt59913JZ6Ry5vL//LKzs/Hll1+iqqoq6LWASmZijMHj8cDt\ndsNkMqG1tRUej0eRTEDfx8hwL9QHYqAZraOjAyaTSTzFNhqNsNlsfZ5GBisLQPI21JZr586dmD17\ntmoyrVy5Eu3t7Vi9erUqMvkPVK2trZLyKJEpOTkZL774YsgLj5XKlJycDJfLhXXr1sFut+M//uM/\nMGXKlKi/TwBgs9nQ1NSEUaNGhcyjVK7x48fjnXfegcfjwa233qqKTPPmzcOzzz6L5ORkdHZ2wm63\n93utYqQyBTtGhlseiIEBAv4LPBcuXIgFCxags7Mz6JscrGw421BTrn379uGSSy6RfBahRKZVq1bh\nkUcewUsvvRT1THa7HYcPH8bEiRMlZVHqfVq0aBHKyspw55134o033oh6ppSUFBiNRixbtgxPP/00\n/vKXv8DlckX9fQKADz/8MOwLsOXM1djYiKqqKjzxxBN4+umn8b//+7+qeK+uueYarFy5Ej/72c+g\n1WolHb8ikSkS2/ZT/ZlNOBeEBisrCEK/2wi3yUOJXMeOHcOhQ4fCGrSgxHsFAOnp6RAEIeqZqqqq\n4Ha7sWHDBpw9exZerxeFhYXIzs6OWqaewrnwWO5Mw4YNQ2trKzIzM1WTyev1oqqqCqtWrZKUR4lc\n9fX18Hq9AHzHBSkVjdyZeqqqqkJeXp5imfwuPkaGe6E+ECPX2QS7wDOci0GDrd++fTuqq6vR2tqK\nMWPGYPHixarI9eijj2Lo0KHgeR65ubniND3RzLR+/XrYbDZotVosWrRIcjOknJn8du3aBafTKbnZ\nQ85MA73wWM5M58+fx2uvvQa73Y5p06ZJbpqVM9PevXthtVoxd+5cSVmUyvXWW2/hyJEjEAQB06dP\nlzyaUM5Mr7zyCurr65GUlITHHntMcstMJDIFO0aG+pu8WExUNoQQQmKb6vtsCCGExD6qbAghhMiO\nKhtCCCGyo8qGEEKI7KiyIUQhb7/9NioqKnqtr6ioQH19fRQSEaIc1V9nQ0i84Diuz/XFxcUKJyFE\neVTZECLB2bNn8dxzz2HKlCk4ePAgDAYDVq5cia6uLmzevBnNzc04d+4crrnmGixcuFB83ubNm/Hl\nlyPYc54AAAIaSURBVF8iMzMTaWlpAdfcvPfee/jXv/6FU6dO4ZlnnkFBQYH42M9//nPce++94rp7\n7rlHnI3A5XJh06ZNOH36NARBwPjx4wP2SYgaUWVDiERWqxW5ubm48847xXXJycm49957kZKSApfL\nhcceewyzZs1CRkYG9u7di1OnTuG5554DAPzqV7/CiBEjxOfeeuutuPXWW/u8gv7is6CeywcPHkR7\nezvWrFkT6ZdIiGyoz4YQicxmM6ZNm9ZrPc/z2L9/P/7xj39Ap9OJk4IePnwY119/PXieB8/zGDt2\n7ICmRrrYFVdcAZvNht/85jf45JNP4Ha7B71NQuRGlQ0hg3Dy5EmsXLkSTU1NyMvLQ2pqqlih8Dwf\nULlEarKO1NRUlJWVYd68eTh58iSefvrpiGyXEDlRZUPIINTW1uKqq67CLbfcAqPRiLNnz4qPjR07\nFpWVlWCMweFwoLq6WvJ2TSYT2traAABHjhwJeIwxBsYYsrOzMW/ePLS0tMDhcETmBREiE+qzIUSi\nvkaTTZ8+HevWrcMXX3yBkSNH4sorrxSb0SZNmoTa2lo88cQTSEtLw7Bhw4KOSLvYrFmz8Oabb+LA\ngQOwWCwBz/v666/xyiuvQKPRwO124+6770ZSUlJkXiQhMqGJOAkhhMiOmtEIIYTIjiobQgghsqPK\nhhBCiOyosiGEECI7qmwIIYTIjiobQgghsqPKhhBCiOz+P+RNrxbtF4K0AAAAAElFTkSuQmCC\n" | |
} | |
], | |
"prompt_number": 26 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [ | |
"treatment_effect('durdiarrea1', u'duraci\u00f3n del evento', False)" | |
], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"text": [ | |
"<matplotlib.collections.PolyCollection at 0x109b00810>" | |
] | |
}, | |
{ | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4FGWeB/BvVV+5CJchHXIDBuWIiHgQEdEZhYXRFSUI\no6ggoiPquOM4jmsgQAYdRUQUHkdBEA9wDKviroOoCDJoQDlyIASIEK6kA4GcnT6r3v2jk0o6Saer\nk+6u6uT3eZ6Qrurqqm93mvpVvW8dHGOMgRBCCPEDXukAhBBCug8qKoQQQvyGigohhBC/oaJCCCHE\nb6ioEEII8RsqKoQQQvyGigohhBC/oaJCOq2+vh5DhgzB3/72N6WjkAA7duwYnE6n0jFU75dfflE6\nguKoqCjA6XSC53mcPn1a6SgdWrJkCd566y2Pzz/zzDN4/vnnkZWVFZQ8a9euxS233OLTaz788EMk\nJiaid+/emDVrVoCSBdfOnTuRmJgYtOV9++23ePDBB1FbW+vT6yZMmIB33303QKnku3TpEq6//nok\nJycjLi4O99xzD86dO9dmugULFiA1NRVJSUm4++67253mk08+wbBhwxAfH4/k5GTs2LHD7fmcnBys\nWrUqYO8lJDASdA6Hg3Ecx06dOqV0lJCyZs0aNmHChE69dtGiRez+++/3cyJl7NixgyUkJARlWb/+\n+itLTU1l5eXlPr92woQJ7N133w1AKt+Ioij9X7NarWzmzJnslltucZtm9erVbNSoUezixYuMMcYW\nLlzIMjIy3KbZtWsXu/rqq1lpaSljjDGn08lsNpvbNE6nk40bN4599913gXo7qkd7KkFgtVoxb948\nxMbGYuTIke1uvaWkpGD79u3S8HvvvYebbrrJbZpFixZh1qxZWLJkCVJTUzFw4EBs3bpVer6qqgpP\nP/00hg8fjri4OKSnp2P37t1u83A4HHj55ZcxfPhwJCYmIiUlBZs2bXKb5s4770RiYiKioqKwYMGC\nNllra2vx2GOPITU1FcnJyZg5cybOnz8vPV9aWgqe57Fjxw7ceOONiI2NxcSJE2E2m3363AoLC3H9\n9dfDaDTi1ltvxbFjx9pMU1xcjN/+9rdISEjA1Vdf3WbLsQnr4tWI8vLyMHbsWCQkJCAjIwOFhYXS\nc2fPnkV4eLjbZ3D06FFERUWhrq5OGldWVoa7774biYmJGD58OP75z3+6LWPRokX4/e9/j7/97W8Y\nNmwYYmJisGLFCrdp5s+fj+nTp8NkMiExMRGJiYn4n//5H7dptm3bhjFjxiAhIQEjR47Exo0bO/2+\nn376afzpT3+C0Whs89yHH36IkSNHIiEhAddeey2+/fbbNtOcPn0ad9xxB+Li4jBq1Cjs3bvX7fkf\nf/wR48ePl95LZmZmuzlWrlyJMWPGdOo9cByHpKQkAIDBYMD999+Pn376yW2a0tJSXHvttejXrx8A\n4LbbbkNJSYnbNEuWLMGKFSuQnJwMANBoNNDr9W7TaDQavPnmm/jDH/7QqazdgtJVrSd4/vnn2XXX\nXceqqqqY0+lkWVlZbfZUUlJS2Pbt26Xh9evXs3HjxrnNJzs7m/Xr149lZ2czURSZxWJhDodDet5q\ntbJt27YxQRAYY66trWHDhrnN47777mMTJ06UtjxtNhurqalpN/dDDz3EFixY0Gb81KlT2QMPPMBs\nNhtzOp3s2WefZTfccIP0/MmTJxnHcWzu3LmspqaGNTQ0sKFDh7K1a9fK/ciYzWZjycnJbOnSpYwx\nxs6dO8euueYaty3Muro6Fh8fz9544w3GGGP5+fksJiaGnTlzps38srOzO72ncubMGRYdHc0+++wz\nxhhjX3/9NYuPj2f19fXSNFOmTGHLly+Xhp9//nk2Z84cadjpdLKrr76a/fnPf2aiKLLS0lKWmJjI\nfvrpJ7eMvXv3Zps2bWKMMbZ9+3am1+uZ1Wp1y7Nz506PeyoHDhxg/fr1Y3l5eYwxxg4fPszi4+PZ\nv/71L5/f97lz55hGo2Hnz59v89yWLVtYYmIiO3r0KGOMsd27d7O+ffuywsJCaZqbb76ZXXPNNdLf\n4/XXX2cDBw50ez8DBw5025upq6trN8snn3zitz3N5cuXs7Fjx7qNKy8vZzfddBN79tln2RtvvMGu\nvfZa9vnnn0vPC4LAwsLC2FNPPcWuvPJKNnToUPbnP/+ZNTQ0tLuMK6+8ku3evdsveUMNFZUgSE1N\nZV9++aU07HQ6O11UpkyZInu5hYWFTKPRSMNnzpxhPM+ziooKWa9/6KGHWFZWlts4k8nEeJ5n1dXV\n0jiHw8Euu+wyaQXZVFSaihtjrmK2cOFC2dl37tzJYmNjmSiK0ri1a9e6NX9t2rSJXXHFFW6ve/TR\nR9mLL77YZn5dKSovvfQSmzRpktu4iRMnso0bN0rDn332GUtPT2eMuVZAiYmJ0oqdMcby8vJYr169\nmNPplMa9+OKLbN68eW4ZZ82aJQ3b7XbGcRw7efKk27I7av567LHH2H/913+5jXvttdfY5MmTZb7b\nZlu3bmW9e/du97lJkyaxlStXuo176qmn2OOPPy4Nt27+EkWRxcXFsR07dkjjrr/+ejZnzhz2yy+/\n+JyvM8xmMxs0aBD7/vvv3cafP39e2uCaPXs2Gzt2rNs0JpOJcRzHVqxYwSwWC6utrWW33nore/TR\nR9tdzp133slWrVoV0PeiVtT8FQQmkwmpqanSMOtCU0zfvn09PscYw4oVKzB+/HiMGzcO8+fPhyiK\nEEURAHDq1Cn06dMHAwYM6PTyT506hX79+qF3797SOK1Wi+Tk5A4PPNDpdFIOOUwmE5KSksBxnDSu\n9ed25swZnDlzBqmpqdLPli1bYDKZfHhH3p05cwZ5eXluy8nPz0dZWZk0ze9+9ztcuHABBw8exHff\nfYfo6GjccMMNbvOw2+0YMmSINI9Vq1a5NZm1fo86nQ4AfPrcTp8+jSFDhriNGzJkCE6dOuXTewZc\nzZwRERF+Ww7HcYiPj0dlZaU07quvvsLll1+OuXPnIjk5GW+88YbPOeVijGHu3Ll46KGHMH78eLfn\nZs6cifT0dHz11VdYt24d3nrrLfznf/4nqqurAQD9+vWDRqPB5MmTERYWhl69euGpp57C5s2b211W\nZGSkW9NnT6JVOkBPkJCQgBMnTuDKK68EAAiC0GYanue9rjxarmDb8+abb2Lz5s349NNPERsbi5Mn\nT2Lw4MHS80lJSaiqqsKpU6ekdmFfJSUl4dKlS7h48SL69+8PALDZbDh58mSn59mehIQEnD59Gowx\n6X23/twGDx6Mq6++Gv/+97+9zs/bZ9eRwYMH44477sAHH3zgcRqtVosHH3wQ7733HqqqqjBv3rw2\n82j6mwQiY5OkpCQUFxe7jSsuLkZKSorP80pJSXErAO0tZ/LkyR0ux+FwuD0uLS2V+jcAoE+fPvjr\nX/+Kv/71rygpKcG4ceNw1VVX4eabb/Y5rzdPPfUUYmJi2u0n/Pnnn/Hqq69Kw1dddRUYYygtLcWo\nUaOg0+lwzTXXYOvWrUhLSwPgKvZNhb+1iooKv/5/CCW0pxIEM2fOxEsvvYT6+nqYzeY2KxzAtRI9\ndOgQANcX8p133mkzjbc9nLNnz8JoNGLAgAGorKzEs88+C6D5P3ZiYiLuvfde/P73v5e2KB0OBy5d\nutTu/NpbntFoxJ133oknnngCVqsVTqcTf/nLX3D55Zd32JHq697Z2LFjERkZiZUrVwIACgoK8Mor\nr7iteKdMmYLKykosW7ZMeo8WiwV2u73Ly2/pgQcewPbt2/HBBx9Ihb+urq7NRsDcuXOxceNGbN26\ntc3hy6NHj8bgwYPx9NNPw2KxAADsdrv02JeMffv2xfnz56VDXlvuIc6bNw/vv/++dIBGUVERXnvt\nNTz++OM+vmvgmmuugdFoxA8//NDmucceewzLly/H4cOHAQDff/89PvzwQ7fvNmMMS5cuxbFjx6TH\nRqMR1113nTRNaWmp9L6dTicEQUB4eHib5X3yySe4//77fX4PTZ555hkAkL5Prd1yyy3IyclBdXU1\nnE4nXn31VURGRkobggCQlZWFZcuW4dSpU3A6nXj33XcxderUNvOyWq0oKCjAxIkTO503pCnQ5Nbj\nNDQ0sBkzZrDevXuz4cOHs40bNzKe5936VL7//nuWlpbGfvvb37JZs2ax7OxsdtNNN7nNZ9GiRW5t\n7q2ZTCY2fvx4ZjQa2XXXXce2bdvGdDod+/XXX6VpbDYbW7p0KbviiitYQkICS01NZevWrWt3fp46\n6mtqatgjjzzCkpOTWWJiIpsxYwYzmUzS8ydPnmQ8z7v1qXiaV0f27t3Lhg0bxmJiYtikSZPYggUL\n2hwKeu7cOXbfffexlJQUlpyczEaOHMkOHjzYZl6LFi1ikZGRLCEhQer890VxcTG74447WFJSEktO\nTmZjxoxp94CAW2+9ld13333tzqO6uprNnz+fDRo0iCUlJbErrriCbd261S1j678vz/Nuf78mDz74\nIOvfvz8bMmQIe/jhh92e+9e//sVGjx7NBg4cyIYPH84++OADn99vk1WrVrGpU6e2+9x7773Hhg0b\nxgYOHMjGjBnDtm3b5vb8hAkT2AsvvMB+85vfsJiYGDZ69Gh26NAht2lmzZrF4uPjWWJiIhs5ciRb\nv359u8tauXIlGzNmTKfew1dffcU4jmOJiYksISFB+mn5/+/ixYtszpw5zGg0sv79+7OJEye2ycoY\nY2+//TYbMmQIi4uLYzNnzmS1tbXtZv3DH/7QqazdAcdY8O78WFhYKLVBTp8+HSNGjOhweofDgT/+\n8Y+48847MWnSpGBEJIS0MnXqVNx666148sknlY6ienv37sUTTzyB77//3mN/VHcXtOYvURSRm5uL\nrKwsZGVlITc31+vu/jfffINBgwb5pa2ZENI5ubm5OHTokN8PgOiO3nnnHWzdurXHFhQgiB31JpMJ\ncXFx0slCsbGx0rj22Gw2FBYW4oYbboDVag1WTEJIK1qtFm+//bbSMUKCGi5Lo7SgFZX6+npERkZi\nw4YNAICIiAjU1dV5LCpbt27FpEmTpEP6PGl5FjohhBD5fvOb3/h9nkErKlFRUTCbzZg7dy4YY1i7\ndi2io6PbnbahoQHFxcW46667sHPnTq/zHj16tJ/TEkJI93bgwIGAzDdofSpGoxHl5eXSsMlkavd6\nQoDreHeHw4GVK1fim2++wc6dO3H27NlgRe2y1tfbUgPKJJ8ac1EmeSiT8oK2p8LzPKZNm4acnBwA\ncLtwXF5eHgwGg7THMXr0aOnxzp07YbPZkJCQEKyohBBCOimohxQHwvbt26n5ixBCfHTgwIGA9KnQ\nGfWEEEL8hopKAKixDZUyyafGXJRJHsqkPCoqhBBC/Ib6VAghpAeiPhVCCCGqR0UlANTYhkqZ5FNj\nLsokz48//hiU5fjSwKPGzymQ6CZdJGRYHQI6+q+s4TnoNbSd5E+MMThEBqfAIIiuT7/p+q6CRod6\nm9M1zsPrRQawxvmIDBDBwBhcP3CNY4xBaPzNAKDxNY0PG3PAbQxrNQ3X+HPBrsHJSxZwXPM4SI+5\n5seNv1nLeTVmapmBSctmLd5L8/vjONeWOcdxbst0PXaNqIce5bVWVwIO4Bs/LA3PgQMHDQfwHOca\nbvGYb3wcaqhPhaieIDJUmu2osbW9Y2ZrOh7Qa3gYtDwMGh46LQ+DhqMrXXdAZAwOgcEpiK4CIjI4\nBBEOgcEuMMi/mTHxl6ZvKy8VmcbfXHMxasJabGq5Fdum6gj3Ytg0+vyJw6F97S9COsPqEFBRb4dN\nkLft4xABhyjC7GheFfIAwrQ8dJqmLUAOWr75PyjPu4YDuVUoMib9pxZbbJG3+CVxG258kdg0beMW\nf8v5MGmrunkZzSsQ1mrYfcvbIboKSkhvWXZDTX8PgQECY3B9nUPjr0RFJQB2796NcePGKR3DTShm\nqrY4UGl2dHlLWQTQ4BQBp+dpOEAqMoeKijB6VHqLZojmJgqec63ghabmHMYgMgZBdD1uGs8am3NE\nuDeXNPF19ZCfn49Ro0b5+KrAokzyqDFTIFFRIarjFBnO19tQbw9ewwsD4GSAU2Aw252oC+KyCelO\nqE+FqEqDXYCp3g6nGNJfS0JUr/50MfWpkNAliAz1NifMDgF2D/0jrLGNnxASuuj4ywBQ43HpcjLV\nWZ04XWXB+XobaiwOWJ1dawISRIYaiwNltVacvGRBhdmBersIe+NRRT/tPyg9tgtMNQUlPz9f6Qht\nUCZ5KJPyaE+FAADMNicq6u0QAVgFAYAAwAENB4TreGh8PDJKYAwNdpEORyWkh6E+FYIGu4CyWhsV\nAEJ6kED1qVDzVw9ncQgop4JCCPETKioBEKw+lQv1dpyttqLSbEed1QmH4Lk0tJfJ6hRRXmuD9/PU\nA0Otbc1qzEWZ5KFMyqM+lRDmFEU0OF0/TTTtdH3wHIc6pseFejv0Gg46DQ+OA8rr7HCGdOMnIURt\nqE8lhJ2ptsBCVYEQ0gnd4jyVwsJCbN68GQAwffp0jBgxwuO0H3/8MY4ePQqe5zFv3jzExsYGK2bI\n6OIRv4QQ4ndB61MRRRG5ubnIyspCVlYWcnNzO7wnwYwZM5CdnY3MzExs2bIlWDH9Ihh9Kowxn846\nV2O7rhozAerMRZnkoUzKC1pRMZlMiIuLg16vh16vR2xsLEwmk9fXHT9+HPHx8R1O03Ilvnv3bsWH\ni4qKAr48p+i6smx+fr7bl5aGuz5ccrxEVXloWP5wyfESVeVR+/cpEILWp3Ls2DHk5eVJw4wxZGRk\nIC0tzeNrsrOzUVtbiyVLlqBXr17tTtNT+1QsDgFnamxKxyCEhKiQP08lKioKZrMZM2fOxIwZM2A2\nmxEdHd3haxYvXoz58+dj1apVQUoZOgSVXNKEEEJaClpRMRqNKC8vl4ZNJhOMRqPX1/Xp0weiGFo9\n0sHoU/G1qAR6l7cz1JgJUGcuyiQPZVJe0I7+4nke06ZNQ05ODgAgMzNTei4vLw8Gg8GtGWvFihWo\nq6uDVqvFnDlzghUzZDhD+0hwQkg3ReephKjz9TZUW5U6F54QEupCvk+F+BfdxIoQokZUVAIgGH0q\nvhYVNbbrqjEToM5clEkeyqQ8Kiohio7+IoSoEfWphCCRMfx60YKQ/sMRQhRFfSpE0nQ2PSGEqA0V\nlQAIdJ+KU/C9pKixXVeNmQB15qJM8lAm5VFRCUHUn0IIUSvqUwlB1RYHzpsdSscghIQw6lMhEiG0\ntwMIId0YFZUACHSfSmeav9TYrqvGTIA6c1EmeSiT8qiohCBHJzrqCSEkGKhPJQSdrrLASoWFENIF\n1KdCJA46+osQolJUVAIgkH0qgsjQmZqixnZdNWYC1JmLMslDmZRHRSXECHQ2PSFExahPJcQ02AWc\nraV70xNCuob6VAgAOpueEKJuVFQCIJB9Kp29OZca23XVmAlQZy7KJA9lUh4VlRBDZ9MTQtSM+lRC\njKnOhlob3ZueENI1gepT0fp9jh0oLCzE5s2bAQDTp0/HiBEjPE67Zs0alJWVQRRFPP7444iNjQ1W\nTFWje9MTQtQsaM1foigiNzcXWVlZyMrKQm5uLjraSXrkkUeQnZ2NzMxMfPHFF8GK6ReBPk+lM9TY\nrqvGTIA6c1EmeSiT8oJWVEwmE+Li4qDX66HX6xEbGwuTyeT1dWFhYdBqO96harkS3717t+LDRUVF\nAZv/gfwCty9pfn4+Dft5uOR4iary0LD84ZLjJarKo/bvUyB47VPZt28fxowZIw2Looj33nsPc+bM\n8WlBx44dQ15enjTMGENGRgbS0tI6fN2aNWswefJkxMfHt/t8T+pTEUSGE5fo3vSEkK5T7DyV1k1P\nPM/jzJkzPi8oKioKZrMZM2fOxIwZM2A2mxEdHd3ha/bt24eBAwd6LCg9Dd2bnhCidh6LytmzZ7Fn\nzx7U1dVh79692LNnD/bu3Yuvv/4alZWVPi/IaDSivLxcGjaZTDAajR6nP3HiBI4cOYIpU6b4vCyl\nBapPpSsnPgZ6l7cz1JgJUGcuyiQPZVKex86K8vJy7N+/H/X19di/f780XqfTYf78+T4viOd5TJs2\nDTk5OQCAzMxM6bm8vDwYDAa3ZqzXXnsN/fv3x+LFi5GUlITZs2f7vMzuho78IoSondc+lX/84x94\n7LHHgpXHZz2pT+VSgwOVDXRvekJI1ynWp6LmgtLTiKF9niohpAegy7QEQKD6VLpyG2E1tuuqMROg\nzlyUSR7KpDyvReXkyZNtxh05ciQgYfypqsEBuyAqHcOv6ArFhBC181pU3n333TbjNm3aFJAw/tTg\nEFBWa4PNKUJkrFM/TpHB6hBQZ3WixuLw+lNrdcIpMowbNy4g78nZheavUaNG+TGJf6gxE6DOXJRJ\nHsqkPK/X/uL5tnUnFK5BaRcYHCLD6Wprl+bj6zvlAITreETqNdDxnNtzGp6Dhueg5TnwHNf+DDzl\nYAzOLjR/EUJIMHjdU9FoNG7npZSXl7dbaNREEJl0+C3r4o+vGIAffz6AC2YHyursbj9namworbLi\n14sWlFZZUF5rw6UGB8w2J+xOEXbB84/NKXbpxEc1tuuqMROgzlyUSR7KpDyveyqZmZlYsmQJxo4d\nC0EQ8OOPP3bqPJVgsgtdWwEHGoNrT8ouCKiz02XsCSHdh6z7qZw/fx4HDx4Ex3EYNWoUBgwYEIxs\nsrR3nkqt1QlTvV2hRIQQon6K3k9lwIABmDhxot8XHijd7agvQggJFbI6R5r2VJpYrV3r/A40h8JF\nRY1tqJRJPjXmokzyUCbleS0qu3btwsqVK7Fx40YArqOQXnzxxYAH6wo7HSVFCCGK8FpUtm3bhkWL\nFiEqKgoAwPl4KGywiYwpXlTUeFw6ZZJPjbkokzyUSXmyDinW6XTSsNVqhd2u3k5wu0D3HCGEEKV4\nLSqXX345PvroIzQ0NGDfvn148cUXA3bGuD84nMp30quxDZUyyafGXJRJHsqkPK9F5b777kNMTAxi\nYmLw73//G7fffjt+97vfBSObbBfq7dJPjc2pdBxCCOmxZJ2nombbt29HVNIVSscghJCQEvT7qYii\n8s1IhBBCQovHorJs2TIAwIoVK4IWprtQYxsqZZJPjbkokzyUSXkei0pNTQ0AoKqqKmhhCCGEhDaP\nfSqvv/46jh8/jtra2jbX+uI4Dq+++mpQAnpDfSqEEOK7oF/76+mnn0ZNTQ3+/ve/409/+pNf7qFS\nWFiIzZs3AwCmT5+OESNGeJz2yJEjeP/99zFs2DDMmjWry8smhBASeB0eUty7d2+MHj0aMTExGDBg\ngNuPr0RRRG5uLrKyspCVlYXc3NwOC5XD4cDUqVN9Xo4aqLENlTLJp8ZclEkeyqQ8r+epZGZm+mVB\nJpMJcXFx0Ov10Ov1iI2Nhclk8jh9enq6dGkYbwoKmv9o+fn5bn9EJYZLjpeoKg8N09+vpwyXHC9R\nVR61f58CIWjnqRw7dgx5eXnSMGMMGRkZSEtL8/iaw4cPY//+/R02f1GfCiGE+C7o56ls2rQJAPDZ\nZ5/5ZUFRUVEwm82YOXMmZsyYAbPZjOjoaL/MmxBCiDp4LCrFxcUA4HYfla4wGo0oLy+Xhk0mE4xG\nY4evCdWT/QO9e9kZlEk+NeaiTPJQJuV5PPrLbrdj9erVqKiowPr1691W8BzHYfbs2T4tiOd5TJs2\nDTk5OQDc+2ry8vJgMBjcbgv8+eefIz8/H9XV1bBYLJg3b55PyyOEEBJ8HvtUamtrcejQIfzzn/9s\n9yisCRMmBDqbLNSnQgghvgv6eSrR0dHIyMjADz/8oJoCQgghRN28HlL87LPPBiNHt6LGNlTKJJ8a\nc1EmeSiT8rwWFUIIIUQuWeep7Nq1CyaTCdOnTwdjDEePHsUVV6ijH4P6VAghxHdBP0+lyYYNG1BS\n0nyWKsdx+Oijj/wehBBCSOjzWlRKSkowZ84cGAyGYOTpFtTYhkqZ5FNjLsokD2VSnqw+FUEQpMcm\nk4nuCkkIIaRdXvtUdu3ahe+++w6VlZW49tprsWfPHjz66KMYNWpUsDJ2iPpUCCHEd0E/T6XJ+PHj\nkZqaiqKiImi1WixevLhTl74nhBDS/clq/kpMTMTkyZNx++23U0GRQY1tqJRJPjXmokzyUCbl0Xkq\nhBBC/CZo91MJFOpTIYQQ3yl2ngohhBAiFxWVAFBjGyplkk+NuSiTPJRJeVRUCCGE+A31qRBCSA9E\nfSqEEEJUr1NFxWaz+TtHt6LGNlTKJJ8ac1EmeSiT8rwWldzcXLdhURSxfPnygAXqjG+OXXT72fHr\nJew/W4sQb9kjhLSDMQZBZHAIImxOERaHAJtThEMQITL4/f990/LsThENDgF1NidqrE7U2ZywOATY\nBREirWskXi/TUlRUhMzMTGmY53lYLJaAhvKV2dHiApeMwcmAPadrUXLRgunpA8BxXFDzqOW6aC1R\nJvnUmEupTDaniEqzAxcb7DDbRXAc0PS/ieuXip/O1IAD5z6eA1xDDHbBtTK2Nf62NxYCu8BgF0TY\nnQw2QWx8jsEhihBFQGAMjLn/FkXmKhoAeA7gOU76LTLXc4IYjnWnjkHDARqeA89xjb9dwxrO/TED\nIIgMQmPhcD12HycyuL2maX6MAc7G1zhFBq5xGm3jj4bnoOU4aDW9sXVHafN4joNOwyFCp0GEnke4\nToMInet3uI5HRNNvvet3mJYHH+R1WFd4LCoHDx7EwYMHUVFRgfXr10vVv6amptPNX4WFhdi8eTMA\nYPr06RgxYoRfpr1reEybcRaHgNU/nsVHB00YGhPZqbxWp4jz9XZUmu1ocHi/MrOW53DFgEhcFReF\nAVH6Ti2TkGBijKHOJqDS7ECl2Y7KBkfzY7MDFoeI/pE69I/QIcqgQdMGOWv8h7kegTWu7FnjEwyu\nsqLT8DBoeeg1HAxaHr0MWvSP4BrH8dBrORg0PPSN0+g0PDStCkbT46aVNgd0uKEotigGTcWoqVC4\nnmucpvHNNBUKrVSE3AuIhut4eU2fo9iqyHT02C4wWB0CGhyuPa0qixNltTZpuMEhosEuwOJwFeGw\nlsVGp0GuVz4OAAAdBklEQVSYjpeWK7Dm5Ystfze+TxGQCnLL55+7svPfm454LCp9+/bFoEGDUFBQ\ngNTUVGm8Xq/HyJEjfV6QKIrIzc3FggULAABLly7F8OHD2/1j+TKtJ+E6DeZnJOCLw5X4paLe57wA\noNfwiInSY0j/cETqNV6ntzhE/FJRj2U7TqBPhAHGXs2FheM49DJo0DtMi95hWvSL0CGhtwHhOu/z\n9Yf8/HxFt8CtDhGHKupx8FwdLjY4AAAWiwXh4eHSNK6VEoNDaPuf0Nn4n6IjHACthoOucQWh0/Cu\nrUONazhMyyPaoEUvgwa9whp/GzTN4wxaaHjOb5+V0M57cLZayTSvjFmLz8C1Wm56TmQMx389gcSk\nFNgbPxuHIEorJ6cgwiE2f27NW+0tVySulSlD80rV5hRxscEBvYbHZZG6xh890mIikJHcG5dF6hAd\npvW4laz0d6o9TZl4TXC37DmOk/aOPGXqLEFksDY2vVkai46lcSPXvfi2/c01FkkOzXtoXOPzqPy1\n05k64rGopKSkICUlBVarFRMmTOjygkwmE+Li4qDXu1a0sbGx0riuTAsABQX5uOoq1x+tqVNs1KhR\nCNdpMJSVA9rm5oOWz8sdZmZgiMzphYoSaKwlGHPjFFRZnCgtPQkASE5OQa1NwPFT52AWOIiGKJyr\nsSGMExBjEHFFYiw0PIeysnIAwMCBrvfa0TBjwJmycjgZ0KffZbALDJWXLgEA+vTpCwCorq6ChgP6\n6LTgy+tRdfZX9NIyjL6685+H3GGLQ8CXew/jZIMGFXYdBvcPR3+hCqkRIoYOHYqjR48CsAMAhg4d\nCgA4fuwoeA4YOXwYtDyHI78cgoYDRo+6CjwHFBQUeFyeIDIcyC+AwIArho2AUxRR9MsRCAwYfHma\nq+gfP4F6Mweu/wCU19pw7kIVLCIHJ6dDvV2ABgwaUYOvq08hUs/Dbq6FgQdS4mMRodOgouwsHAzo\nGxOHBoeAcxWVsIsctOFRsDgE1DTYYBcBgblWLjzHoOEAg04LLc9BcNjBc0BURDg0PAdLgxkcgMjI\nKHAcYK6vB8cBvaJ6geOA+ro61xY6p8Wl8nrU1bj+nnEDYqDlOVy8UAENByQnxEOn4XDu7BnwAFJT\nkqHhOZwqPQkOwJDBg6HhgRO//goOwBVpl7um/7UYer7V52kDhiQF/vsRiOGS4yWqypOfn4+S4yV+\nmV+kXtPu82In59e5TW3vgnaeyrFjx5CXlycNM8aQkZGBtLS0Lk0byuepCCJDRb0dp6utOF9vR2f+\nEnoN19h04Go+aGoeaMnmFFFRb0d5nR0VdXbU2py4LEKHcB0Pnab5tXoND03joRvNTRmdU2N14teL\nFgy5LBxXD+yFkXFRiAjSXllnicy1RWi2C61+msfZBRHh2qb27ua2cOm3nke4VgNd49+CELVS7H4q\n/hIVFQWz2Yy5c+eCMYa1a9ciOjq6y9OGMg3PYWC0AQOjg3urZptTxAWz3a3D1NH4W2jRdeRqu+7c\nMsK0PB4aExe05j1/4LnGzlOdBp3shiOkx/NaVI4ePYqvv/4aDQ0NbuOfe+45nxZkNBpRXl4uDZtM\nJhiNxi5Pq0ZqbmsGAIOWR0LvMIUTqfNzAtSZizLJQ5mU57WorF69GnfffTdiYpqPsOrMIbo8z2Pa\ntGnIyckBALfDlPPy8mAwGDB69Giv0xJCCFEvr30qS5cuxQsvvBCsPD4L5T4VQghRimLX/rr++uvx\n008/+X3BhBBCuh+vzV8bNmyA0+mETqeTxnEchw0bNgQ0WChTYxsqZZJPjbkokzyUSXlei8oHH3wQ\njByEEEK6AbqfCiGE9ECK3k9l165d+OSTTwC4TkQsLi72exBCCCGhz2tR2bBhA0pKSqTT+zmOw0cf\nfRTwYKFMjfdPoEzyqTEXZZKHMinPa1EpKSnBnDlzYDAE96xvQgghoUdW85cgCNJjk8kEUfR+Gfie\nTI1HelAm+dSYizLJQ5mU5/Xor9tuuw05OTmorKzEhg0bsGfPHjz66KPByEYIISTEeN1TGT9+PB5+\n+GFMnjwZcXFxWLRoUY+rvL5SYxsqZZJPjbkokzyUSXmyrlKcmJiIxMTEQGchhBAS4ryep7Jr1y7s\n378fdrvdbbyvVykOFDpPhRBCfKfY/VS2bNmCGTNmIDKSbjBBCCGkY177VDIzM3HixAnU1dWhtrYW\ntbW1qKurC0a2kKXGNlTKJJ8ac1EmeSiT8rzuqWzcuBGJiYm4ePGi2/jrr78+YKEIIYSEJq99Kps2\nbcItt9yi2jsvUp8KIYT4TrE+lW+//RZffPEFXfqeEEKIV16LyrvvvhuMHN2KGu+fQJnkU2MuyiQP\nZVKerMu0tNb68GJCCCEEkFFUcnNz3YZFUcSrr74asEDdgRq3SiiTfGrMRZnkoUzK81pUioqK3F/A\n87BYLD4vqLCwEAsXLsTChQtx6NAhr9MfOXIEzz//PN15khBCQojHonLw4EGsW7cOFRUVWL9+Pdat\nW4d169ZhxYoVsNlsPi1EFEXk5uYiKysLWVlZyM3NhbcbTjocDkydOtWn5aiFGo9Lp0zyqTEXZZKH\nMinPY0d93759MWjQIBQUFCA1NVUar9frMXLkSJ8WYjKZEBcXB71eDwCIjY2VxnmSnp6Ow4cPy5p/\nQUE+rrrKtYvZ9Ads2uVUYrjkeImiy29vuIla8qh5mP5+oTtccrxEVXnU+n0KZJOc1/NUvvrqK0ya\nNEn2DAsLC7Flyxa3cffccw9+/vlnaZgxhoyMDKSlpXU4r8OHD2P//v2YNWuWx2m2b9+OgZcPl4Yd\nggiLs+O9IEII6ekUO0/Fl4ICuPYw0tPT3caVlZXBbDZj7ty5YIxh7dq1iI6O9i1pB4y9mu9KWWd1\nwlJPR6cRQogSOnVIsa+MRiPKy8ulYZPJJOsMfW/9Lu3RaYPyljqkxjZUyiSfGnNRJnkok/K87qmU\nlZXh//7v/1BVVQXAtaKvqanBSy+9JHshPM9j2rRpyMnJAeC6SGVLeXl5MBgMGD16tDTu888/R35+\nPqqrq2GxWDBv3jxZy9LxHDgA1ABGCCHB57VP5bnnnsP48eNRVlaGQYMG4cSJE4iPj8fkyZODlbFD\n27dvdytGAFBaZYFdoLJCCCGeBKpPxWtbkV6vx5QpU5CWloa+ffvi4Ycfxr59+/wexJ/0Gk7pCIQQ\n0iN5LSrh4eEAgOTkZOzZswdOp7PNZfDVRq9Rtl9FjW2olEk+NeaiTPJQJuV5XfvecsstqKurQ0pK\nCgDg0UcfxW233RboXF2i42lPhRBClOC1T0Xt2utTabALOFvr21n/hBDSkyjWpxKKdBrXEWCEEEKC\nS1ZR2bVrFz755BMArkOKi4uLAxqqq3QaHkqerqLGNlTKJJ8ac1EmeSiT8ryuejds2ICSkhLpg+E4\nDh999FHAg3WVju+WO2GEEKJqXte8JSUlmDNnDgwGg7dJVUWvVa4BTI33T6BM8qkxF2WShzIpT9bm\nvCAI0mOTyQRRFAMWyF+i9Nru2WFECCEq5nW9e9tttyEnJwcXLlzAhg0bsHjx4jaXWVGjCL0Gcb30\nfiksPOc6odLbj65xYWpsQ6VM8qkxF2WShzIpz+u1v8aPH4/U1FQUFRVBq9Vi8eLFGDBgQDCydVmk\nQYsEnoNT7NxR0zzHQavhfDqZ0uIQcCZchzANB1s7l4oJ6eO3CSHEi255nooaMcYgMMApMogig0MQ\nYRNE2JwibE4G9TcoEkK6E8Xup3LhwgXExMT4fcE9Dcdx0HKAVjrbXyM9JzLm9QKYosjohE5CiOp5\nbdd55ZVXgpGjW9m9e7dP0/MchzAt3+FPuI7v0gmdamzXVWMmQJ25KJM8lEl5sq5STJTHcRx0dPVl\nQojKee1T2b59O86dO4e7777bbXxUVFRAg8kVKn0q/nC22ooGJ/W+EEK6TrE+lU8//RQAsHfvXmkc\nx3FYtWqV38OQjmno6suEEJXzWlRWr14djBzdyu7duzFu3Di/z1fbhaKSn5+vujN71ZgJUGcuyiQP\nZVIenXQeQjTUp0IIUblOnadis9lUcy2wntSnUmt1wlRvVzoGIaQbUOx+Krm5uW7Doihi+fLlPi+o\nsLAQCxcuxMKFC3Ho0CGv069ZswaLFy9GdnY2KioqfF5ed9SV5i9CCAkGr0WlqKjI/QU8D4vF4tNC\nRFFEbm4usrKykJWVhdzcXHjbQXrkkUeQnZ2NzMxMfPHFFz4tT2m+nqciF9/FPhW1UWMmQJ25KJM8\nlEl5HjvqDx48iIMHD6KiogLr16+XikBNTQ1sNt/O7DaZTIiLi5POeYmNjZXGeRMWFgattuPjCVp2\njDet0JUcLioqCsj8tTyHwsICiCKTOv6avrDehpvInb4nD5ccL1FVnpbUkketwyXHS1SVR63fp0Ae\nOOCxT6W0tBSlpaX47LPPMHXqVGm8Xq/HyJEj0atXr3ZnWFhYiC1btriNu+eee/Dzzz9Lw4wxZGRk\nIC0tzWvANWvWYPLkyYiPj2/3+Z7UpwIAJRcb0MnrYxJCiCTo56mkpKQgJSUFVqsVEyZMkD3D9PR0\npKenu40rKyuD2WzG3LlzwRjD2rVrER0d7XVe+/btw8CBAz0WlJ5Ix7d/9WNCCFEDr30qkyZN6vJC\njEYjysvLpWGTyQSj0djha06cOIEjR45gypQpXV5+sAWqTwXo/AmQamzXVWMmQJ25KJM8lEl5Xk9+\n9Aee5zFt2jTk5OQAQJubfOXl5cFgMLg1Y7322mvo378/Fi9ejKSkJMyePTsYUVWPjgAjhKgZ3U8l\nxFSa7bhkcSodgxAS4hQ7T4Woi4ajPRVCiHpRUQmAQPapdLb5S43tumrMBKgzF2WShzIpj4pKiKEr\nFRNC1Iz6VEKMzSniVLVV6RiEkBBHfSoEgKv5i/ZVCCFqRUUlAAJ9nkpnWsDU2K6rxkyAOnNRJnko\nk/KoqIQgHfWrEEJUivpUQtC5GivMDrpXPSGk86hPhUjorHpCiFpRUQmAQPapAJ07rFiN7bpqzASo\nMxdlkocyKY+KSgiiPRVCiFpRn0oIqrM6UU73qieEdAH1qRAJnVVPCFErKioBEOg+lc40f6mxXVeN\nmQB15qJM8lAm5VFRCUFaDZ1VTwhRJ+pTCVEnLzWATlUhhHQW9akQN9SvQghRIyoqARDoPhXA934V\nNbbrqjEToM5clEkeyqQ8Kiohis5VIYSoEfWphKiLDXZcbKB71RNCOidQfSpav8/Rg8LCQmzevBkA\nMH36dIwYMaLD6T/++GMcPXoUPM9j3rx5iI2NDUbMkKGle9UTQlQoKM1foigiNzcXWVlZyMrKQm5u\nLrztIM2YMQPZ2dnIzMzEli1bghHTb4LRp+JrR70a23XVmAlQZy7KJA9lUl5QiorJZEJcXBz0ej30\nej1iY2NhMplkvfb48eOIj4/vcJqWK/Hdu3crPlxUVBTw5TUVlfz8fLcvLQ13fbjkeImq8tCw/OGS\n4yWqyqP271Mg+L1PpbCwsM2exT333IOff/5ZGmaMISMjA2lpaR3OKzs7G7W1tViyZAl69erV7jQ9\ntU/FLogoraJ71RNCOidk+lTS09ORnp7uNq6srAxmsxlz584FYwxr165FdHS013ktXrwYJSUlWLVq\nFZ5//nl/Rw1pTfeqD+mjLAgh3U5Qmr+MRiPKy8ulYZPJBKPRKOu1ffr0gSiG1qnjwehT4TnOp8OK\nA73L2xlqzASoMxdlkocyKS8oR3/xPI9p06YhJycHAJCZmen2fF5eHgwGg1sz1ooVK1BXVwetVos5\nc+YEI2bI0fKgS7UQQlSFzlMJYeW1VtTZm6tKmIaDQcuj9dHGInP1wdidDFSDCCFACPWpkODR8Bwi\ndDwi9RpE6DQwaDtuzWSMwS4wOAQRVqeISxY6eZIQ4l90mZYACEafCgDEROqR0DsMfcN1XgvK7t27\nwXGuPZkogxaXRerRL1zZbQq1tjWrMRdlkocyKY+KSgjjunhW/WWRekQbNH5KQwgh1KfS44mMoazW\nhoYA9/hzAMJ1PKL0Gug1nrdl6u1OVFuFgGYhhFCfCgkQnuMQ18uAc7VWWJ3+3b7gAUToeUTqNIg0\naGUdAh2h1yBC58QFswMOMaS3d0gnePyGcK7vEwc0HojCgeMah+E6X6vp2+LaTGYQWeP4TnyNmubN\nt7MscM3LBGteNmMdL7OnfJupqATA7t27MW7cOKVjuOkok4bnYOxlwLlaGxxC81dfwwFhWh5hOh68\njzcw1vAcIvWaDq9R5ilTlEGLcJ0GF8x21NqCv9eSn5+PUaNGBX25HVEiEwfXYes6nodOw0HDc24r\ny/yCfIy6ahRYB6tLDhx43vW7aSXNcRx4zrVBgxbjuMZxTd8YaUXuQzPvDz/8gBtvvLHNeMZYq6LT\nvJLvyvI6IjIGxoC9e/fguutvgMhYcxFqLEAiYxDExsdgEEXXONf4xucZIDTOqzOFKdiXnqWiQgAA\neg2PuF4G1FgcMGh5hGn5xsOTlbkaclOhi9Q5caHBASfttQQEzwF6noNOw0Gn4aHlXSfVajU8dDzX\n4UZBOLMjJkofxLTeeWrN51oUq2CtZfnGKiUKQuNeetcW7FaAGt9n83tqUYxbPNGySLZcOscB+ae7\nFMcj6lMhqucUGS7U21Fn977XwgHQaVwrRr2Gg5Z3rRy1Gtd/OpG55ucUmfSfVGCuYUFkcDZ2LXX2\nP0VT8wyP5q3vpnGu1UrjOK7lf/IWjzi0MxbSVnzT49Zb/m7L4NrOj2scaLni4ThA10H/FuneDhw4\nQH0qpGfS8hziog3o6xA6XNnznGuLm+/i3pUgNhcbxiA9bhrmOQ6axpU8zwE8z0mPNXzXl09IKKPN\nlAAI1nkqvugOmcJ0GoR38GPQ8n5Zoef9+AP0Wh7hOg0i9Br0CtOiT7gO/SP0rvN7InToHa5DrzAt\nIhv7fwxaHjqNf5bfnu7w9wsGyqQ8KiqEEEL8hvpUCCGkBwpUnwrtqRBCCPEbKioBoMY2VMoknxpz\nUSZ5KJPyqKgQQgjxG+pTIYSQHoj6VAghhKgeFZUAUGMbKmWST425KJM8lEl5VFQIIYT4TdD6VAoL\nC7F582YAwPTp0zFixAivr3E4HPjjH/+IO++8E5MmTWp3GupTIYQQ34X0tb9EUURubi4WLFgAAFi6\ndCmGDx/u9Qq433zzDQYNGqTYlXIJIYT4JijNXyaTCXFxcdDr9dDr9YiNjYXJZOrwNTabDYWFhRgz\nZozHy1mrlRrbUCmTfGrMRZnkoUzK83vzV2FhIbZs2eI27p577sHPP/8sDTPGkJGRgbS0NI/z+fzz\nz5GSkoLq6mpYrdYOm78IIYT4LiSav9LT05Genu42rqysDGazGXPnzgVjDGvXrkV0dLTHeTQ0NKC4\nuBh33XUXdu7c2eHyAvGhEEII6Zyg9KkYjUaUl5dLwyaTCUaj0eP0xcXFcDgcWLlyJc6fPw9BEDBi\nxAgkJCQEIy4hhJBOCtrRXwUFBdLRX5mZmW57M3l5eTAYDO0exbVz507YbDZMnDgxGDEJIYR0Qchf\npoUQQoh60MmPhBBC/IaKCiGEEL8JSke9XL6cde9pWk/jjxw5gvfffx/Dhg3DrFmzVJNrzZo1KCsr\ngyiKePzxxxEbG6t4po8//hhHjx4Fz/OYN2+eKjIB8q6wEMxMq1evRllZGfR6PW6++WZMmDBB8UwX\nL17EqlWrIAgCBg8ejAcffFDRTA0NDVi2bJn02hMnTmDDhg2yMgUyFwB8//332LZtGzQaDe69915Z\nV/kIdKZvvvkGO3fuRFhYGObOnYu4uLigZfK0jvT5aihMJQRBYFlZWcxmszGbzcYWLlzIRFGUPW1H\n4xljrKCggO3du5e9//77qsjVeh5FRUXsnXfeUVWmI0eOsLfffls1mb788ku2bNky9tVXXymaqcnq\n1avZhQsXZGUJVqYVK1aw4uJiVWRqPY/S0lL2j3/8Q/FcTZ555hkmCAIzm83sv//7vxXPZLVapRw1\nNTVs+fLlQcvEWPvrSF/m3UQ1zV++nHXf3rTl5eUexwOu82eioqJUk6v1PMLCwqDVyttxDFam48eP\nIz4+XhWZOnOFhUB/pwD4fLWHQGYSRREVFRUYOnSoKjK1nsfWrVtl72EGMlfT3y8hIQGHDx/GgQMH\nOjwRO1iZGGNwOp1wOByIjIxEdXU1nE5nUDIB7a8jO3M1FNU0f9XX1yMyMlLaNY6IiEBdXV27u3+e\npgUgex5qy7Vjxw5MnjxZNZmys7NRW1uLJUuWqCJT0wqpurpaVp5gZAoPD8cbb7yBqKgoPPjggx2e\nexWMTOHh4bDb7Vi2bBkaGhrwH//xH7juuusU/5wAoK6uDhcvXkRycrLXPMHKlZ6eji+//BJOp1P2\nKQuBzjR16lS8+OKLCA8Ph9lsRkNDQ4cnivsrk6d1pK/TAyrqqI+KioLZbMbMmTMxY8YMmM1mjx+m\np2l9mYeacu3btw8DBw6UvVcQjEyLFy/G/PnzsWrVKsUzNV1hYdSoUbKyBOtzmj17NnJycnDvvffi\ngw8+UDxTVFQUIiIi8Mwzz+CFF17AZ599BrvdrvjnBADffvutz1e/CGSuiooKHDhwAM899xxeeOEF\n/O///q8qPqsbbrgB2dnZ+Mtf/gKtVitr/eWPTP6YdxPV7Kn4cta9p2lFUexwHr42VQQj14kTJ3Dk\nyBGfDh4IxmcFAH369IEoiopnOnDgQKeusBCsz0mn08luugx0pssuuwzV1dXo16+fajIJgoADBw5g\n8eLFsvIEI1dZWRkEQQDgWi/IKSiBztTSgQMHkJKSErRMTVqvI329GgqgspMfPZ11394Z956m9TT+\n888/R35+PqqrqzFs2DDMmzdPFbmeeOIJ9O/fHzzPIykpCbNnz1Y804oVK1BXVwetVovZs2fLbj4M\nZKYmvl5hIZCZXn/9dVRVVSE8PBwPP/wwYmJiFM9UWVmJNWvWoKGhAWPHjpXdpBrITHv27IHJZMJd\nd90lK0uwcn366ac4evQoRFHEjTfeKPvovUBmeuutt1BWVoawsDA8+eSTslta/JHJ0zrS2//J1lRV\nVAghhIQ21fSpEEIICX1UVAghhPgNFRVCCCF+Q0WFEEKI31BRIcTPvvjiC+Tm5rYZn5ubi7KyMgUS\nERI8qjlPhZDuguO4dsdnZmYGOQkhwUdFhZAWzp8/j5dffhnXXXcdCgoKYDAYkJ2dDYvFgvXr1+PS\npUu4cOECbrjhBsycOVN63fr163H48GH069cPvXv3djtnZdu2bfjhhx9w+vRpLFy4EIMGDZKeW7Ro\nER544AFp3KxZs6Sz8+12O9atW4czZ85AFEWkp6e7LZMQNaKiQkgrJpMJSUlJuPfee6Vx4eHheOCB\nBxAVFQW73Y4nn3wSkyZNQt++fbFnzx6cPn0aL7/8MgDglVdewYABA6TXTpw4ERMnTmz3jPLWezUt\nhwsKClBbW4ulS5f6+y0SEjDUp0JIK0ajEWPHjm0znud57N+/H9999x10Op10ccvi4mKMHz8ePM+D\n53kMHz68U5cEam3o0KGoq6vDm2++iR9//BEOh6PL8yQk0KioECLDqVOnkJ2djYsXLyIlJQXR0dFS\n4eB53q2I+OsiFdHR0cjJycHUqVNx6tQpvPDCC36ZLyGBREWFEBmKioowevRo3H777YiIiMD58+el\n54YPH468vDwwxmC1WpGfny97vpGRkaipqQEAHD161O05xhgYY0hISMDUqVNRVVUFq9XqnzdESIBQ\nnwohrbR39NaNN96IZcuW4dChQ4iPj8eVV14pNX9dc801KCoqwnPPPYfevXvjsssu83gEWGuTJk3C\nRx99hIMHDyIuLs7tdefOncNbb70FjUYDh8OB+++/H2FhYf55k4QECF1QkhBCiN9Q8xchhBC/oaJC\nCCHEb6ioEEII8RsqKoQQQvyGigohhBC/oaJCCCHEb/4f5kjVzDQB9EkAAAAASUVORK5CYII=\n" | |
} | |
], | |
"prompt_number": 27 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": [], | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment