Skip to content

Instantly share code, notes, and snippets.

@jcboyd
Last active March 16, 2021 15:14
Show Gist options
  • Save jcboyd/6716981917396b6ee7af28be2329a929 to your computer and use it in GitHub Desktop.
Save jcboyd/6716981917396b6ee7af28be2329a929 to your computer and use it in GitHub Desktop.
from __future__ import print_function
from __future__ import division
import io
import random
import numpy as np
from PIL import Image
from skimage.transform import resize
import quantumrandom # https://qrng.anu.edu.au/
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.image import MIMEImage
from pulp import LpProblem, LpMinimize, LpVariable, LpBinary, lpSum
from keras.models import Sequential
from keras.layers import Dense, LSTM, Conv2D, Activation, BatchNormalization
from keras.layers import UpSampling2D, Reshape
from keras.utils import get_file
people = [
{\
'name' : 'Name1',\
'email' : '[email protected]'},
{\
'name' : 'Name2',\
'email' : '[email protected]'},
{\
'name' : 'Name3',\
'email' : '[email protected]'}]
def build_generator(img_shape, noise_dim):
# Generator
generator = Sequential()
s = img_shape[0] // 4
nb_channels = img_shape[-1]
generator.add(Dense(128 * s * s, input_dim=noise_dim,
kernel_initializer='glorot_uniform'))
generator.add(BatchNormalization(momentum=0.9))
generator.add(Activation('relu'))
generator.add(Reshape((s, s, 128)))
generator.add(UpSampling2D(size=(2, 2)))
generator.add(Conv2D(16, kernel_size=(3, 3), padding='same',
kernel_initializer='glorot_uniform'))
generator.add(BatchNormalization(momentum=0.9))
generator.add(Activation('relu'))
generator.add(Conv2D(16, kernel_size=(3, 3), padding='same',
kernel_initializer='glorot_uniform'))
generator.add(BatchNormalization(momentum=0.9))
generator.add(Activation('relu'))
generator.add(UpSampling2D(size=(2, 2)))
generator.add(Conv2D(32, kernel_size=(3, 3), padding='same',
kernel_initializer='glorot_uniform'))
generator.add(BatchNormalization(momentum=0.9))
generator.add(Activation('relu'))
generator.add(Conv2D(nb_channels, kernel_size=(5, 5), padding='same',
activation='tanh', kernel_initializer='glorot_uniform'))
path = get_file('generator.h5',
origin='https://jcboyd.github.io/assets/secret-santa/generator.h5')
generator.load_weights(path)
return generator
def get_image(model):
gen_noise = np.random.randn(1, 100)
sample = model.predict(gen_noise)
sample = resize(sample.squeeze(), output_shape=(256, 256, 3), order=0)
sample = np.clip(127.5 * sample + 127.5, 0, 255).astype('uint8')
img = Image.fromarray(sample, 'RGB')
return img
# character ordering for RNN
chars = [u'\n', u' ', u'!', u'"', u'&', u"'", u'(', u')', u',', u'-', u'.',
u'0', u'1', u'2', u'3', u'4', u'5', u'7', u'8', u'9', u':', u';',
u'>', u'?', u'a', u'b', u'c', u'd', u'e', u'f', u'g', u'h', u'i',
u'j', u'k', u'l', u'm', u'n', u'o', u'p', u'q', u'r', u's', u't',
u'u', u'v', u'w', u'x', u'y', u'z', u'\x92', u'\xe8', u'\xeb']
def build_rnn(max_length=40):
model = Sequential()
model.add(LSTM(128, input_shape=(max_length, len(chars))))
model.add(Dense(len(chars), activation='softmax'))
path = get_file('rnn_weights.h5',
origin='https://jcboyd.github.io/assets/secret-santa/rnn_weights.h5')
model.load_weights(path)
return model
def get_verse(model, verse='wishing you a very merry cbio christmas\n'):
max_lines = 4
max_length = 40
while verse.count('\n') < max_lines:
x_pred = np.zeros((1, max_length, len(chars)))
for t, char in enumerate(verse[-max_length:]):
x_pred[0, t, chars.index(char)] = 1.
# anneal probabilties - no alarms/surpises please!
preds = model.predict(x_pred, verbose=0)[0].astype('float64')
logits = np.exp(np.log(preds) / 0.02)
probs = logits / np.sum(logits)
idx = np.random.choice(probs.shape[0], p=probs)
next_char = chars[idx]
verse += next_char
return verse
def send_mail(sender, receiver, verse, img):
"""
Composes email for sender-receiver pair
"""
msgRoot = MIMEMultipart('related')
msgRoot['Subject'] = 'Christmas Party -- Secret Santa'
msgRoot['From'] = 'Ninja Santa <[email protected]>'
msgRoot['To'] = '%s <%s>' % (sender['name'], sender['email'])
msgRoot.preamble = 'This is a multi-part message in MIME format.'
msgText = MIMEText("""<h1>Hi %s!</h1>
<p>You are the Secret Santa of <b>%s!</b></p>
<img src="cid:image1" style="width:128px;height:128px;">
<p><i>%s</i></p>
<p>This email was auto-generated from the cluster.
Random shuffle seeded with quantum random data
(<a href="https://qrng.anu.edu.au/">https://qrng.anu.edu.au/</a>).
Secret santas assigned with integer programming.
Verse composed by LSTM.
Complete script available
<a href=https://gist.github.com/jcboyd/6716981917396b6ee7af28be2329a929>
here.</a>
And <a href=https://github.com/jcboyd/ganta-claus>this</a>
is how GANta was trained.</p>
""" % (sender['name'].split(" ")[0], receiver['name'], verse), 'html')
msgRoot.attach(msgText)
# attach image
outbuf = io.BytesIO()
img.save(outbuf, format='PNG')
msgImage = MIMEImage(outbuf.getvalue())
# Define the image's ID as referenced above
msgImage.add_header('Content-ID', '<image1>')
msgRoot.attach(msgImage)
smtpObj = smtplib.SMTP(host='localhost', port=25)
smtpObj.sendmail('[email protected]', \
sender['email'], \
msgRoot.as_string())
def secret_santa_assignment(num_people):
"""
Solves an integer programming problem to make sender-receiver assignments
"""
p = LpProblem('p', LpMinimize)
# objective is dummy variable
p += 0
# square matrix of sender-receiver variables
vars = [[LpVariable('x_%d_%d' % (i, j), 0, 1, LpBinary)\
for j in range(num_people)]\
for i in range(num_people)]
for i, sender in enumerate(vars):
for j, receiever in enumerate(sender):
# no one sends to themselves
if i == j:
p += receiever >= 0
p += -receiever >= 0
# everyone sends to exactly one person
p += lpSum(sender) == 1
# everyone receives from exactly one person
col = [vars[k][i] for k in range(num_people)]
p += lpSum(col) == 1
p.solve()
assignment = np.array(
[[vars[i][j].value()\
for i in range(num_people)]\
for j in range(num_people)])
return assignment
if __name__ == '__main__':
# Seed with quantum randomness--can't be too careful...
# random.seed(int(quantumrandom.hex(), 16))
# random.shuffle(people)
# Create assignment
num_people = len(people)
assignment = secret_santa_assignment(num_people)
# Assert that assignment is valid
assert all(np.diag(assignment) == 0)
assert all(assignment.sum(axis=0) == 1)
assert all(assignment.sum(axis=1) == 1)
rnn = build_rnn()
generator = build_generator((32, 32, 3), noise_dim=100)
for i, sender in enumerate(people):
receiver = people[np.argmax(assignment[i])]
try:
verse = get_verse(rnn).replace('\n', '<br/>')
img = get_image(generator)
send_mail(sender, receiver, verse, img)
print('Sent to %s...' % (sender['email']))
except:
print('Message failed to send')
continue
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment