Created
May 22, 2017 12:48
-
-
Save jcbozonier/076eb327c66d1e165992fb8e9a18e15a to your computer and use it in GitHub Desktop.
Generating example data
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# These are the "true" slopes and intercepts that I made up. | |
set_parameters = ( | |
(('no degree', 'CA', 'Riverside County'), (5000, 1250)), | |
(('no degree', 'IL', 'Cook County'), (6500, 1150)), | |
(('no degree', 'IL', 'Lake County'), (7000, 1350)), | |
(('degree', 'CA', 'Riverside County'), (6000, 1250)), | |
(('degree', 'IL', 'Cook County'), (7500, 1150)), | |
(('degree', 'IL', 'Lake County'), (8000, 1350)) | |
) | |
# Go through each definition above and generate a fake time series | |
rows = [] | |
for set_parameter, N in zip(set_parameters, data_points): | |
key, parameters = set_parameter | |
population_rows = [{ | |
'degree': key[0], | |
'state': key[1], | |
'county': key[2], | |
'month_index': i, | |
# Create time series data and add some noise to make it realistic | |
'salary': i*parameters[0] + parameters[1] + np.random.normal(loc=0, scale=500) | |
} for i in range(N)] | |
rows += population_rows | |
salary_df = pd.DataFrame(rows) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment