Created
September 14, 2018 18:04
-
-
Save jcheong0428/d0883512a2cb7ede0fb930be089f7399 to your computer and use it in GitHub Desktop.
Helper function to easily extract parts of a symmetrical N by N matrix
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
def parse_triangle(df, condition='upper'): | |
''' | |
This function grabs the upper triangle of a correlation matrix | |
by masking out the bottom triangle (tril) and returns the values. | |
You can use scipy.spatial.distance.squareform to recreate matrix from upper triangle | |
Args: | |
df: pandas or numpy correlation matrix | |
condition: 'upper': grabs the upper triangle | |
'pairs': grabs pair of subjects, skipping each diagonal | |
'nonpairs': grabs nonpairs, upper - pairs | |
Returns | |
df: masked df | |
''' | |
try: | |
assert(type(df)==np.ndarray) | |
except: | |
if type(df)==pd.DataFrame: | |
df = df.as_matrix() | |
else: | |
raise TypeError('Must be np.ndarray or pd.DataFrame') | |
if condition =='upper': | |
mask = np.triu_indices(df.shape[0], k=1) | |
return df[mask] | |
else: | |
noDyads = int(df.shape[0]/2) | |
if condition =='pairs': | |
return np.diag(df,k=1)[range(0,noDyads*2,2)] | |
elif condition =='nonpairs': | |
mask = np.triu(np.ones(df.shape),k=1).astype(np.bool) | |
ix, iy = np.arange(0,noDyads*2,2), np.arange(1,noDyads*2,2) | |
for i in np.arange(0,len(ix)): | |
mask[ix[i],iy[i]] = False | |
return df[mask] | |
else: | |
raise ValueError('Condition,'+ str(condition) +' not recognized') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment