Created
November 15, 2021 04:52
-
-
Save jcheong0428/ea2e1c169f87d8a934f6584e9703ae3f to your computer and use it in GitHub Desktop.
backpain_2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy import stats | |
def create_future(): | |
"""Code to create datetime index for the covid WFH period.""" | |
future = list() | |
for y in [2020]: | |
for m in range(4, 13): | |
date = f'{y}-{m:02d}' | |
future.append([date]) | |
for y in [2021]: | |
for m in range(1, 12): | |
date = f'{y}-{m:02d}' | |
future.append([date]) | |
future = pd.DataFrame(future) | |
future.columns = ['ds'] | |
future['ds'] = pd.to_datetime(future['ds']) | |
return future | |
for variableOfInterest in ['back pain', 'lower back pain', 'chiropractor near me']: | |
ts = pd.DataFrame({'ds':df.loc[:'2020-03-01'].index,'y':df.loc[:'2020-03-01'][variableOfInterest]}) | |
prophet = Prophet(weekly_seasonality=False, | |
daily_seasonality=False, | |
changepoint_range=1, | |
changepoint_prior_scale=0.1, | |
) | |
prophet.fit(ts) | |
future = create_future() | |
forecast = prophet.predict(future) | |
f, ax =plt.subplots() | |
covid_df = df.loc['2020-04-01':][[variableOfInterest]] | |
covid_df.plot(ax=ax) | |
forecast_covid_df = forecast[['yhat']] | |
forecast_covid_df.index = covid_df.index | |
forecast_covid_df.plot(ax=ax, color='r') | |
ax.set_ylabel("searches (%)", rotation=0, labelpad=60) | |
ax.set(title=f'{variableOfInterest}') | |
plt.legend(['ground truth searches (y)', 'predicted searches (yhat)'], bbox_to_anchor=(1.05, .65), loc=2, borderaxespad=0.) | |
plt.show() | |
diff = covid_df.values - forecast_covid_df.values | |
print(stats.ttest_1samp(diff.ravel(), 0)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment