Created
November 23, 2018 07:50
-
-
Save jchia/4c30e4f6a901d117193c4833680f8be4 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
import numpy as np | |
import keras.layers as kl | |
import tensorflow as tf | |
class_count = 5 | |
width, height = 100, 100 | |
# Placeholders | |
ph = tf.placeholder(shape=[1, width, height], dtype=tf.float32) | |
labels_ph = tf.placeholder(shape=[1], dtype=tf.int32) | |
# GRU with batch normalization | |
with tf.variable_scope("GRU1"): | |
gru_cell = tf.contrib.rnn.GRUCell(num_units=20) | |
final_state = kl.SimpleRNN(20)(ph) | |
bn = kl.BatchNormalization() | |
norm_output_gru = bn(final_state) | |
# The prediction layer | |
logits = kl.Dense(class_count, activation=None)(norm_output_gru) | |
onehot_labels = tf.one_hot(labels_ph, depth=class_count) | |
# Optimizer | |
loss = tf.losses.softmax_cross_entropy(onehot_labels, logits) | |
optimizer = tf.train.MomentumOptimizer(learning_rate=0.1, momentum=0.9) | |
# From https://www.tensorflow.org/api_docs/python/tf/layers/batch_normalization | |
with tf.control_dependencies(bn.updates): | |
train_op = optimizer.minimize(loss) | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
sess.run([train_op, loss], feed_dict={ph: np.zeros([1, width, height]), labels_ph: np.zeros([1])}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment