Created
June 18, 2020 19:33
-
-
Save jcmgray/e0ab3458a252114beecb1f4b631e19ab to your computer and use it in GitHub Desktop.
Stochastic gradient descent functions compatible with ``scipy.optimize.minimize(..., method=func)``.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from scipy.optimize import OptimizeResult | |
def sgd( | |
fun, | |
x0, | |
jac, | |
args=(), | |
learning_rate=0.001, | |
mass=0.9, | |
startiter=0, | |
maxiter=1000, | |
callback=None, | |
**kwargs | |
): | |
"""``scipy.optimize.minimize`` compatible implementation of stochastic | |
gradient descent with momentum. | |
Adapted from ``autograd/misc/optimizers.py``. | |
""" | |
x = x0 | |
velocity = np.zeros_like(x) | |
for i in range(startiter, startiter + maxiter): | |
g = jac(x) | |
if callback and callback(x): | |
break | |
velocity = mass * velocity - (1.0 - mass) * g | |
x = x + learning_rate * velocity | |
i += 1 | |
return OptimizeResult(x=x, fun=fun(x), jac=g, nit=i, nfev=i, success=True) | |
def rmsprop( | |
fun, | |
x0, | |
jac, | |
args=(), | |
learning_rate=0.1, | |
gamma=0.9, | |
eps=1e-8, | |
startiter=0, | |
maxiter=1000, | |
callback=None, | |
**kwargs | |
): | |
"""``scipy.optimize.minimize`` compatible implementation of root mean | |
squared prop: See Adagrad paper for details. | |
Adapted from ``autograd/misc/optimizers.py``. | |
""" | |
x = x0 | |
avg_sq_grad = np.ones_like(x) | |
for i in range(startiter, startiter + maxiter): | |
g = jac(x) | |
if callback and callback(x): | |
break | |
avg_sq_grad = avg_sq_grad * gamma + g**2 * (1 - gamma) | |
x = x - learning_rate * g / (np.sqrt(avg_sq_grad) + eps) | |
i += 1 | |
return OptimizeResult(x=x, fun=fun(x), jac=g, nit=i, nfev=i, success=True) | |
def adam( | |
fun, | |
x0, | |
jac, | |
args=(), | |
learning_rate=0.001, | |
beta1=0.9, | |
beta2=0.999, | |
eps=1e-8, | |
startiter=0, | |
maxiter=1000, | |
callback=None, | |
**kwargs | |
): | |
"""``scipy.optimize.minimize`` compatible implementation of ADAM - | |
[http://arxiv.org/pdf/1412.6980.pdf]. | |
Adapted from ``autograd/misc/optimizers.py``. | |
""" | |
x = x0 | |
m = np.zeros_like(x) | |
v = np.zeros_like(x) | |
for i in range(startiter, startiter + maxiter): | |
g = jac(x) | |
if callback and callback(x): | |
break | |
m = (1 - beta1) * g + beta1 * m # first moment estimate. | |
v = (1 - beta2) * (g**2) + beta2 * v # second moment estimate. | |
mhat = m / (1 - beta1**(i + 1)) # bias correction. | |
vhat = v / (1 - beta2**(i + 1)) | |
x = x - learning_rate * mhat / (np.sqrt(vhat) + eps) | |
i += 1 | |
return OptimizeResult(x=x, fun=fun(x), jac=g, nit=i, nfev=i, success=True) |
Thanks for implementing those!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I suppose the logic (guessing slightly from 3 years ago, and apart from simply the effort of writing some) is that these stochastic gradient methods always can take a step successfully - unlike some optimization methods which require finding a line search direction etc.