Last active
August 30, 2018 00:08
-
-
Save jcreedcmu/62730e4c6585139fd81b89cc6ff84bc5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# OPTIONS --without-K #-} | |
open import HoTT | |
module b where | |
A : Set | |
A = ℕ | |
rev : (A → A → Set) → (A → A → Set) | |
rev R a a' = R a' a | |
data Opt : Set where | |
none : Opt | |
some : A → Opt | |
pairsa : Opt → List A → Opt → List (Opt × Opt) | |
pairsa u nil v = (u , v) :: nil | |
pairsa u (x :: tl) v = (u , some x) :: pairsa (some x) tl v | |
swpairsa : Opt → List A → Opt → List (Opt × Opt) | |
swpairsa u nil v = (u , v) :: nil | |
swpairsa u (x :: tl) v = (some x , v) :: swpairsa u tl (some x) | |
pairs : List A → List (Opt × Opt) | |
pairs ℓ = pairsa none ℓ none | |
swpairs : List A → List (Opt × Opt) | |
swpairs ℓ = swpairsa none ℓ none | |
swap : {X : Set} → X × X → X × X | |
swap (a , b) = (b , a) | |
-- pairsa (1 :: 2 :: 3 :: nil) (some 0) (some 999) = | |
-- (some 0 , some 1) :: | |
-- (some 1 , some 2) :: | |
-- (some 2 , some 3) :: (some 3 , some 999) :: nil | |
-- swpairsa (3 :: 2 :: 1 :: nil) (some 0) (some 999) = | |
-- (some 3 , some 999) :: | |
-- (some 2 , some 3) :: (some 1 , some 2) :: (some 0 , some 1) :: nil | |
lemma : (ℓ : List A) (u v : Opt) (x : A) → | |
pairsa u (snoc ℓ x) v == snoc (pairsa u ℓ (some x)) (some x , v) | |
lemma nil u v x = idp | |
lemma (y :: ℓ) u v x = ap (λ z → (u , some y) :: z) (lemma ℓ (some y) v x) | |
thm : (ℓ : List A) (u v : Opt) → pairsa u (reverse ℓ) v == reverse (swpairsa u ℓ v) | |
thm nil u v = idp | |
thm (x :: ℓ) u v = lemma (reverse ℓ) u v x ∙ ap (λ z → snoc z (some x , v)) (thm ℓ u (some x)) | |
satisfiesRel : Opt → List A → Opt → (Opt × Opt → Set) → Set | |
satisfiesRel u ℓ v R = All R (pairsa u ℓ v) | |
bigThmRephrase : (ℓ : List A) (u v : Opt) (R : Opt × Opt → Set) → | |
All R (pairsa u ℓ v) → | |
All (λ x → R (snd x , fst x)) (pairsa v (reverse ℓ) u) | |
bigThmRephrase ℓ u v R φ = {!transport!} | |
bigThm : (ℓ : List A) (u v : Opt) (R : Opt × Opt → Set) → | |
satisfiesRel u ℓ v R → satisfiesRel v (reverse ℓ) u (R ∘ swap) | |
bigThm ℓ u v R = bigThmRephrase ℓ u v R |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment