Last active
May 29, 2023 09:55
-
-
Save jcrudy/5911624 to your computer and use it in GitHub Desktop.
An example of using a kernel density estimate as a prior in a pymc model that can be updated based on the posterior sample.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy.stats.kde import gaussian_kde | |
import pymc | |
from math import log | |
from matplotlib import pyplot | |
def KernelSmoothing(name, dataset, bw_method=None, lower=float('-inf'), upper=float('inf'), observed=False, value=None): | |
'''Create a pymc node whose distribution comes from a kernel smoothing density estimate.''' | |
density = gaussian_kde(dataset, bw_method) | |
lower_tail = 0 | |
upper_tail = 0 | |
if lower > float('-inf'): | |
lower_tail = density.integrate_box(float('-inf'),lower) | |
if upper < float('inf'): | |
upper_tail = density.integrate_box(upper,float('inf')) | |
factor = 1.0/(1.0 - lower_tail - upper_tail) | |
def logp(value): | |
if value < lower or value > upper: | |
return float('-inf') | |
d = density(value) | |
if d == 0.0: | |
return float('-inf') | |
return log(factor*density(value)) | |
def random(): | |
result = None | |
while result == None: | |
result = density.resample(1)[0][0] | |
if result < lower or result > upper: | |
result = None | |
return result | |
if value == None: | |
value = random() | |
dtype = type(value) | |
result = pymc.Stochastic(logp = logp, | |
doc = 'A kernel smoothing density node.', | |
name = name, | |
parents = {}, | |
random = random, | |
trace = True, | |
value = dataset[0], | |
dtype = dtype, | |
observed = observed, | |
cache_depth = 2, | |
plot = True, | |
verbose = 0) | |
return result | |
############################################################################### | |
# Use the KernelSmoothing node to update a prior after new information is added | |
############################################################################### | |
#True value, used to generate observed values | |
xtrue = 2 | |
#Initial prior to be passed to the KernelSmoothing node | |
x = pymc.rnormal(0, 0.01, size=5000) | |
#Plot the prior | |
pyplot.figure() | |
pyplot.hist(x,bins=30) | |
pyplot.title('Prior Distribution of X') | |
pyplot.show() | |
for i in range(10): | |
#Create the KernelSmoothing node | |
X = KernelSmoothing('X', x) | |
# f(x) = x*x | |
Y = X*X | |
#Create the observed node with data generated from the true distribution | |
OBS = pymc.Normal('OBS', Y, 0.1, value=xtrue*xtrue+pymc.rnormal(0,1), observed=True) | |
#Do the sampling | |
model = pymc.Model([X,Y,OBS]) | |
mcmc = pymc.MCMC(model) | |
mcmc.sample(5000) | |
#Get the posterior sample, to be passed into the KernelSmoothing node on the next iteration | |
x = mcmc.trace('X')[:] | |
#Display the histogram of the posterior distribution | |
pyplot.figure() | |
pyplot.hist(x,bins=30) | |
pyplot.title('Posterior Distribution of X: %d Iterations' % (i+1,)) | |
pyplot.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment