Created
January 13, 2014 19:25
-
-
Save jdavidson/8406379 to your computer and use it in GitHub Desktop.
An analysis of crunchbase data for start up financing timing.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
library(ggthemes) | |
library(plyr) | |
library(lubridate) | |
library(scales) | |
library(data.table) | |
options(scipen=999) | |
options(stringsAsFactors = FALSE) | |
rounds <- read.csv("2014-01-06-crunchbase_monthly_export_rounds.csv") | |
# exclude non venture rounds (other, private equity, post-ipo) | |
rounds <- subset(rounds, funding_round_type %in% c("venture", "angel", "series-a", "series-b"))# , "series-c+")) | |
rounds <- subset(rounds, funded_month != "1960-01") | |
# fix strange date data | |
rounds$funded_at <- ymd(paste(rounds$funded_month, "01", sep="-")) | |
rounds$round_raised_amount_usd <- cut(rounds$raised_amount_usd, breaks=c(0, 500000, 1000000, 5000000, 10000000, 20000000, 40000000, 80000000, Inf), right=FALSE)# round(rounds $raised_amount_usd / 500000) * 500000 | |
# dedup | |
rounds <- data.table(rounds) | |
setkeyv(rounds, c("company_name", "funded_at", "funding_round_type")) | |
rounds <- unique(rounds) | |
# restrict to companies first funded after 2008 | |
companies <- rounds[, list(first_funded_at = min(funded_at)), by = company_name] | |
rounds <- join(rounds, companies) | |
rounds <- subset(rounds, first_funded_at > ymd("2008-01-01")) | |
# fix strange difference in units from diff | |
my.diff <- function(x, lag=1) { | |
n <- length(x) | |
round(difftime(x[(1+lag):n], x[1:(n-lag)], units="days") / 30) | |
} | |
# round sequences | |
rounds_index <- rounds[, id := seq_along(funded_at), by=company_name] | |
rounds_index <- rounds_index[, diff := c(my.diff(funded_at), NA), by=company_name] | |
rounds_index$lifetime <- rounds_index$diff | |
rounds_index[is.na(rounds_index$lifetime),]$lifetime <- round(as.numeric(difftime(max(rounds_index$funded_at), rounds_index[is.na(rounds_index$lifetime),]$funded_at, units="days") / 30)) | |
# rounds_index <- ddply(rounds, .(company_name), transform, index=seq_along(funded_at), diff=c(my.diff(funded_at), NA)) | |
# aggregate | |
medians <- ddply(rounds_index, .(funding_round_type), summarize, rounds=length(id), median=median(diff, na.rm=T), mean=mean(diff, na.rm=T)) | |
medians <- medians[order(medians$median),] | |
diff_summary <- rounds_index[, list(rounds = length(id)), by = c("funding_round_type", "diff")] | |
setnames(diff_summary, "diff", "lifetime") | |
diff_summary <- diff_summary[!is.na(diff_summary$lifetime),] | |
diff_summary <- diff_summary[order(funding_round_type, lifetime, decreasing=T),] | |
diff_summary <- diff_summary[, cum_rounds := cumsum(rounds), by= funding_round_type] | |
round_lifetimes <- rounds_index[, list(total_rounds = length(id)), by = c("funding_round_type", "lifetime")] | |
round_lifetimes <- round_lifetimes[order(funding_round_type, lifetime, decreasing=T),] | |
round_lifetimes <- round_lifetimes[, cum_total_rounds := cumsum(total_rounds), by= funding_round_type] | |
diff_summary <- join(diff_summary, round_lifetimes) | |
diff_summary <- diff_summary[order(funding_round_type, lifetime),] | |
diff_summary$percent <- diff_summary$rounds / diff_summary$cum_total_rounds | |
ggplot(diff_summary, aes(x=lifetime, y=rounds, color=funding_round_type)) + geom_point() + scale_x_continuous(breaks = 0:4 * 12, limits=c(0,48)) + geom_smooth() + ggtitle("Financings") + ylab("Financings") + xlab("Months After Funding") + scale_color_discrete(name = "Round") | |
ggplot(diff_summary, aes(x=lifetime, y= cum_rounds / cum_total_rounds, color=funding_round_type)) + geom_line() + scale_x_continuous(breaks = 0:4 * 12, limits=c(0,48)) + ggtitle("Likelihood Of Raising A Follow On Round By Time") + ylab("Percent of Companies that Raise a Follow On Round") + xlab("Months After Funding") + scale_y_continuous(labels = percent_format()) + scale_color_discrete(name = "Round") | |
ggsave("follow-on-likelihood-by-time.png") | |
#### round_raised_amount_usd | |
medians <- ddply(rounds_index, .(funding_round_type, round_raised_amount_usd), summarize, rounds=length(id), median=median(diff, na.rm=T), mean=mean(diff, na.rm=T)) | |
medians[order(medians$funding_round_type, medians$median),] | |
diff_summary <- rounds_index[, list(rounds = length(id)), by = c("funding_round_type", "round_raised_amount_usd", "diff")] | |
setnames(diff_summary, "diff", "lifetime") | |
diff_summary <- diff_summary[!is.na(diff_summary$lifetime),] | |
diff_summary <- diff_summary[order(funding_round_type, round_raised_amount_usd, lifetime, decreasing=T),] | |
diff_summary <- diff_summary[, cum_rounds := cumsum(rounds), by= c("funding_round_type", "round_raised_amount_usd")] | |
round_lifetimes <- rounds_index[, list(total_rounds = length(id)), by = c("funding_round_type", "round_raised_amount_usd", "lifetime")] | |
round_lifetimes <- round_lifetimes[order(funding_round_type, round_raised_amount_usd, lifetime, decreasing=T),] | |
round_lifetimes <- round_lifetimes[, cum_total_rounds := cumsum(total_rounds), by=c("funding_round_type", "round_raised_amount_usd")] | |
diff_summary <- join(diff_summary, round_lifetimes) | |
diff_summary <- diff_summary[order(funding_round_type, round_raised_amount_usd, lifetime),] | |
diff_summary$percent <- diff_summary$rounds / diff_summary$cum_total_rounds | |
diff_summary <- diff_summary[!is.na(diff_summary$round_raised_amount_usd),] | |
ggplot(subset(diff_summary, funding_round_type == "angel"), aes(x=lifetime, y=rounds, color= as.factor(round_raised_amount_usd))) + geom_point() + xlim(0,48) + geom_smooth() + ggtitle("") + ylab("Rounds") + xlab("Months After Funding") | |
ggplot(subset(diff_summary, funding_round_type == "angel"), aes(x=lifetime, y= cum_rounds / cum_total_rounds, color= as.factor(round_raised_amount_usd))) + geom_line() + xlim(0,48) + ggtitle("") + ylab("Likelihood of a Follow On Round") + xlab("Months After Funding") + scale_y_continuous(labels = percent_format()) | |
diff_summary$funding_round_type <- factor(diff_summary$funding_round_type, levels=c("angel", "venture", "series-a", "series-b")) | |
diff_summary$round_raised_amount_usd <- mapvalues(diff_summary$round_raised_amount_usd, from = c("[0,5e+05)", "[5e+05,1e+06)", "[1e+06,5e+06)", "[5e+06,1e+07)", "[1e+07,2e+07)", "[2e+07,4e+07)", "[4e+07,8e+07)", "[8e+07,Inf)"), to = c("$0-.5M", "$.5-1M", "$1-5M", "$5-10M", "$10-20M", "$20-40M", "$40-80M", "$80M+")) | |
ggplot(subset(diff_summary, cum_total_rounds > 20 & round_raised_amount_usd != "$80M+"), aes(x=lifetime, y= cum_rounds / cum_total_rounds, color=round_raised_amount_usd)) + geom_line() + xlim(0,48) + ggtitle("Follow On Likelihood by Round and Amount") + ylab("Likelihood of a Follow On Round") + xlab("Months After Funding") + scale_y_continuous(labels = percent_format()) + facet_wrap(~ funding_round_type) + scale_colour_few() | |
ggsave("follow-on-likelihood-by-round-size.png") | |
#### company_category_code | |
medians <- ddply(rounds_index, .(funding_round_type, company_category_code), summarize, rounds=length(id), median=median(diff, na.rm=T), mean=mean(diff, na.rm=T)) | |
medians <- medians[order(medians$funding_round_type, medians$median),] | |
diff_summary <- rounds_index[, list(rounds = length(id)), by = c("funding_round_type", "company_category_code", "diff")] | |
setnames(diff_summary, "diff", "lifetime") | |
diff_summary <- diff_summary[!is.na(diff_summary$lifetime),] | |
diff_summary <- diff_summary[order(funding_round_type, company_category_code, lifetime, decreasing=T),] | |
diff_summary <- diff_summary[, cum_rounds := cumsum(rounds), by= c("funding_round_type", "company_category_code")] | |
round_lifetimes <- rounds_index[, list(total_rounds = length(id)), by = c("funding_round_type", "company_category_code", "lifetime")] | |
round_lifetimes <- round_lifetimes[order(funding_round_type, company_category_code, lifetime, decreasing=T),] | |
round_lifetimes <- round_lifetimes[, cum_total_rounds := cumsum(total_rounds), by=c("funding_round_type", "company_category_code")] | |
diff_summary <- join(diff_summary, round_lifetimes) | |
diff_summary <- diff_summary[order(funding_round_type, company_category_code, lifetime),] | |
diff_summary$percent <- diff_summary$rounds / diff_summary$cum_total_rounds | |
category_counts <- ddply(rounds, .(company_category_code), summarize, counts=length(unique(company_name))) | |
category_counts <- category_counts[order(category_counts$counts, decreasing=T),] | |
ggplot(subset(diff_summary, company_category_code %in% category_counts[1:9, "company_category_code"]), aes(x=lifetime, y=rounds, color=funding_round_type)) + geom_point() + xlim(0,48) + geom_smooth() + ggtitle("") + ylab("Rounds") + xlab("Months After Funding") + facet_wrap(~ company_category_code) | |
ggplot(subset(diff_summary, company_category_code %in% category_counts[1:9, "company_category_code"]), aes(x=lifetime, y= cum_rounds / cum_total_rounds, color= funding_round_type)) + geom_line() + xlim(0,48) + ggtitle("Follow On Likelihood by Category") + ylab("Likelihood of a Follow On Round") + xlab("Months After Funding") + scale_y_continuous(labels = percent_format()) + facet_wrap(~ company_category_code) | |
ggsave("follow-on-likelihood-by-round-category.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment