Created
February 3, 2014 18:41
-
-
Save jdavidson/8789695 to your computer and use it in GitHub Desktop.
Analysis of start up category performance from crunchbase
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
library(ggthemes) | |
library(dplyr) | |
library(lubridate) | |
library(scales) | |
library(data.table) | |
library(reshape2) | |
options(scipen=999) | |
options(stringsAsFactors = FALSE) | |
# fix strange difference in units from diff | |
my.diff <- function(x, lag=1) { | |
n <- length(x) | |
round(difftime(x[(1+lag):n], x[1:(n-lag)], units="days") / 30) | |
} | |
rounds <- read.csv("2014-01-06-crunchbase_monthly_export_rounds.csv") | |
# dedup | |
rounds <- data.table(rounds) | |
setkeyv(rounds, c("company_name", "funded_at", "funding_round_type")) | |
rounds <- unique(rounds) | |
rounds <- subset(rounds, funded_month != "1960-01") | |
# fix strange date data | |
rounds$funded_at <- ymd(paste(rounds$funded_month, "01", sep="-")) | |
rounds <- arrange(rounds, funded_at) | |
rounds <- rounds[, id := seq_along(funded_at), by=company_name] | |
rounds <- rounds[, diff := c(my.diff(funded_at), NA), by=company_name] | |
# clean up rounds | |
rounds <- filter(rounds, company_country_code == "USA", company_state_code != "") | |
rounds$company_region <- toupper(gsub(" - Other", "", rounds$company_region)) | |
rounds$company_city <- toupper(gsub("[^[:alnum:]///' ]", "", rounds$company_city)) | |
rounds[company_region == "SF BAY"]$company_state_code <- "CA" | |
rounds[company_region == "NEW YORK"]$company_state_code <- "NY" | |
rounds[company_region == "LOS ANGELES"]$company_state_code <- "CA" | |
rounds <- filter(rounds, !company_region %in% c("UNKNOWN", "TBD")) | |
rounds$geocode <- paste(rounds$company_region, rounds$company_state_code, rounds$company_country_code) | |
categories <- read.csv("categories.csv") | |
names(categories)[1] <- c("company_category_code") | |
rounds <- data.table(inner_join(rounds, select(categories, company_category_code, broad_category))) | |
rounds <- filter(rounds, broad_category %in% c("enterprise", "consumer")) | |
category_success <- filter(rounds, id==1, funded_at > ymd("2005-01-01")) %.% group_by(broad_category, year=year(funded_at)) %.% summarise(companies=n(), follow_on=sum(!is.na(diff))) %.% arrange(desc(companies)) | |
cplot <- ggplot(filter(category_success, year < 2014), aes(x=as.factor(year), y=follow_on / companies, fill= broad_category)) + geom_bar(stat="identity", position="dodge") + ylab("Follow On Rate") + xlab("Year") + ggtitle("Follow On Rate by Category") + scale_fill_discrete(name="Category") + theme(legend.position=c(.9,.8),legend.key = element_rect(fill=alpha("white", .2)), legend.background = element_rect(fill=alpha("white", .9)), legend.title=element_blank()) | |
ggsave("category-follow-on.png", cplot, width=640 / 72, height=400 / 72, dpi=72) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment