Last active
October 9, 2016 18:42
-
-
Save jdmonaco/db1f34fe993dffa71d26 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Spike train cross-correlogram methods. | |
""" | |
import time | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy import real | |
from scipy.fftpack import fft, ifft | |
def spikes(rate, duration): | |
return np.random.rand(int(rate * duration)) * duration | |
def xcorr(a, b, maxlag=1.0, bins=128): | |
""" | |
Compute the cross-correlogram of two spike train arrays. | |
""" | |
if bins % 2 == 0: | |
bins += 1 | |
edges = np.linspace(-maxlag, maxlag, bins + 1) | |
nb = b.size | |
start = end = 0 | |
H = np.zeros(bins) | |
for t in a: | |
while b[start] < t - maxlag: | |
start += 1 | |
while end < nb and b[end] <= t + maxlag: | |
end += 1 | |
H += np.histogram(b[start:end] - t, bins=edges)[0] | |
centers = (edges[:-1] + edges[1:]) / 2 | |
return H, centers | |
def xcorrfft(a, b, dt=0.001, maxlag=1.0, bins=128): | |
""" | |
Use FFT to compute spike-train cross-correlograms with post-hoc rebinning. | |
""" | |
if bins % 2 == 0: | |
bins += 1 | |
edges = np.linspace(-maxlag, maxlag, bins + 1) | |
tmin, tmax = np.min([a,b]), np.max([a,b]) | |
dur = tmax - tmin | |
xedges = np.linspace(tmin, tmax, dur / dt) | |
xa = np.histogram(a, bins=xedges)[0] | |
xb = np.histogram(b, bins=xedges)[0] | |
Fa = fft(xa, overwrite_x=True) | |
Fb = fft(xb[::-1], overwrite_x=True) | |
C = real(ifft(Fa * Fb, overwrite_x=True)) | |
Cfull = np.r_[C, C[-2::-1]] # reflect around y-axis | |
lag = np.linspace(-dur + dt / 2, 0, C.size) | |
lagfull = np.r_[lag, -1.0 * lag[-2::-1]] | |
windex = np.abs(lagfull) <= maxlag | |
lagwin = lagfull[windex] | |
Cwin = Cfull[windex] | |
Cbinned = np.histogram(np.repeat(lagwin, Cwin.astype(int)), bins=edges)[0] | |
centers = (edges[:-1] + edges[1:]) / 2 | |
return Cbinned, centers | |
np.random.seed(11235) | |
st = spikes(10.0, 200.0) | |
t0 = time.time() | |
C, lags = xcorr(st, st) | |
dt1 = time.time() - t0 | |
Cfft, lagsfft = xcorrfft(st, st, dt=0.001) # change binarization here | |
dt2 = time.time() - dt1 - t0 | |
print 'Loopy dt = {} seconds'.format(dt1) | |
print 'FFT dt = {} seconds'.format(dt2) | |
plt.ioff() | |
fig = plt.figure(num=10, figsize=(12, 5)) | |
fig.clear() | |
ax = fig.add_subplot(111) | |
ax.plot(lags, C, drawstyle='steps-mid', label='loops') | |
ax.plot(lagsfft, Cfft, ls='-', c='r', drawstyle='steps-mid', label='fft') | |
ax.set_ylim(bottom=0) | |
ax.legend(loc=2) | |
ax.set(xlabel='Lag (s)', ylabel='count') | |
ax.set_title('Comparing loop and FFT spike cross-correlograms') | |
plt.ion() | |
plt.draw() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I don't understand what the
spikes
function actually gives you. I thought it would be the timestamp of each spike in a spike train, but that can't be right.