-
-
Save jdrew1303/d2b2160e88c9fce6cd0f07ac68fbaa9e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(mnormt) | |
mycols <- topo.colors(100,0.5) | |
xhat <- c(0.2, -0.2) | |
Sigma <- matrix(c(0.4, 0.3, | |
0.3, 0.45), ncol=2) | |
x1 <- seq(-2, 4,length=151) | |
x2 <- seq(-4, 2,length=151) | |
f <- function(x1,x2, mean=xhat, varcov=Sigma) | |
dmnorm(cbind(x1,x2), mean,varcov) | |
z <- outer(x1,x2, f) | |
image(x1,x2,z, col=mycols, main="Prior density", | |
xlab=expression('x'[1]), ylab=expression('x'[2])) | |
contour(x1,x2,z, add=TRUE) | |
points(0.2, -0.2, pch=19) | |
text(0.1, -0.2, labels = expression(hat(x)), adj = 1) | |
R <- 0.5 * Sigma | |
z2 <- outer(x1,x2, f, mean=c(2.3, -1.9), varcov=R) | |
image(x1, x2, z2, col=mycols, main="Sensor density") | |
contour(x1, x2, z2, add=TRUE) | |
points(2.3, -1.9, pch=19) | |
text(2.2, -1.9, labels = "y", adj = 1) | |
contour(x1, x2,z, add=TRUE) | |
points(0.2, -0.2, pch=19) | |
text(0.1, -0.2, labels = expression(hat(x)), adj = 1) | |
G = diag(2) | |
y <- c(2.4, -1.9) | |
xhatf <- xhat + Sigma %*% t(G) %*% solve(G %*% Sigma %*% t(G) + R) %*% (y - G %*% xhat) | |
Sigmaf <- Sigma - Sigma %*% t(G) %*% solve(G %*% Sigma %*% t(G) + R) %*% G %*% Sigma | |
z3 <- outer(x1, x2, f, mean=c(xhatf), varcov=Sigmaf) | |
image(x1, x2, z3, col=mycols, | |
xlab=expression('x'[1]), ylab=expression('x'[2]), | |
main="Filtered density") | |
contour(x1, x2, z3, add=TRUE) | |
points(xhatf[1], xhatf[2], pch=19) | |
text(xhatf[1]-0.1, xhatf[2], | |
labels = expression(hat(x)[f]), adj = 1) | |
lb <- adjustcolor("black", alpha=0.5) | |
contour(x1, x2, z, add=TRUE, col=lb) | |
points(0.2, -0.2, pch=19, col=lb) | |
text(0.1, -0.2, labels = expression(hat(x)), adj = 1, col=lb) | |
contour(x1, x2, z2, add=TRUE, col=lb) | |
points(2.3, -1.9, pch=19, col=lb) | |
text(2.2, -1.9,labels = "y", adj = 1, col=lb) | |
A <- matrix(c(1.2, 0, | |
0, -0.2), ncol=2) | |
Q <- 0.3 * Sigma | |
K <- A %*% Sigma %*% t(G) %*% solve(G%*% Sigma %*% t(G) + R) | |
xhatnew <- A %*% xhat + K %*% (y - G %*% xhat) | |
Sigmanew <- A %*% Sigma %*% t(A) - K %*% G %*% Sigma %*% t(A) + Q | |
z4 <- outer(x1,x2, f, mean=c(xhatnew), varcov=Sigmanew) | |
image(x1, x2, z4, col=mycols, | |
xlab=expression('x'[1]), ylab=expression('x'[2]), | |
main="Predictive density") | |
contour(x1, x2, z4, add=TRUE) | |
points(xhatnew[1], xhatnew[2], pch=19) | |
text(xhatnew[1]-0.1, xhatnew[2], | |
labels = expression(hat(x)[new]), adj = 1) | |
contour(x1, x2, z3, add=TRUE, col=lb) | |
points(xhatf[1], xhatf[2], pch=19, col=lb) | |
text(xhatf[1]-0.1, xhatf[2], col=lb, | |
labels = expression(hat(x)[f]), adj = 1) | |
contour(x1, x2, z, add=TRUE, col=lb) | |
points(0.2, -0.2, pch=19, col=lb) | |
text(0.1, -0.2, labels = expression(hat(x)), adj = 1, col=lb) | |
contour(x1, x2, z2, add=TRUE, col=lb) | |
points(2.3, -1.9, pch=19, col=lb) | |
text(2.2, -1.9,labels = "y", adj = 1, col=lb) | |
## Plot all stages with lattice | |
library(lattice) | |
grid <- expand.grid(x=x1,y=x2) | |
grid$Prior <- as.vector(z) | |
grid$Likelihood <- as.vector(z2) | |
grid$Posterior <- as.vector(z3) | |
grid$Predictive <- as.vector(z4) | |
contourplot(Prior + Likelihood + Posterior + Predictive ~ x*y, | |
data=grid, col.regions=mycols, region=TRUE, | |
as.table=TRUE, | |
xlab=expression(x[1]), | |
ylab=expression(x[2]), | |
main="Kalman Filter", | |
panel=function(x,y,...){ | |
panel.grid(h=-1, v=-1) | |
panel.contourplot(x,y,...) | |
}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment