-
-
Save jds485/fd737a8314d45485f7e11f588baf88b9 to your computer and use it in GitHub Desktop.
Firth regression in python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
''' | |
#!/usr/bin/env python | |
''' | |
'''Python implementation of Firth regression by John Lees | |
See https://www.ncbi.nlm.nih.gov/pubmed/12758140 | |
''' | |
import sys | |
import warnings | |
import math | |
import statsmodels | |
import numpy as np | |
from scipy import stats | |
import statsmodels.api as sm | |
def firth_likelihood(beta, logit): | |
return -(logit.loglike(beta) + 0.5*np.log(np.linalg.det(-logit.hessian(beta)))) | |
# Do firth regression | |
# Note information = -hessian, for some reason available but not implemented in statsmodels | |
def fit_firth(y, X, start_vec, step_limit=1000, convergence_limit=0.00001): | |
logit_model = sm.Logit(y, X) | |
if start_vec is None: | |
start_vec = np.zeros(X.shape[1]) | |
beta_iterations = [] | |
beta_iterations.append(start_vec) | |
for i in range(0, step_limit): | |
pi = logit_model.predict(beta_iterations[i]) | |
W = np.diagflat(np.multiply(pi, 1-pi)) | |
var_covar_mat = np.linalg.pinv(-logit_model.hessian(beta_iterations[i])) | |
# build hat matrix | |
rootW = np.sqrt(W) | |
H = np.dot(np.transpose(X), np.transpose(rootW)) | |
H = np.matmul(var_covar_mat, H) | |
H = np.matmul(np.dot(rootW, X), H) | |
# penalised score | |
U = np.matmul(np.transpose(X), y - pi + np.multiply(np.diagonal(H), 0.5 - pi)) | |
new_beta = beta_iterations[i] + np.matmul(var_covar_mat, U) | |
# step halving | |
j = 0 | |
while firth_likelihood(new_beta, logit_model) > firth_likelihood(beta_iterations[i], logit_model): | |
new_beta = beta_iterations[i] + 0.5*(new_beta - beta_iterations[i]) | |
j = j + 1 | |
if (j > step_limit): | |
print(j, beta_iterations[i], new_beta) | |
sys.stderr.write('Firth regression failed\n') | |
return None | |
beta_iterations.append(new_beta) | |
if i > 0 and (np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) < convergence_limit): | |
break | |
return_fit = None | |
if np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) >= convergence_limit: | |
print(np.linalg.norm(beta_iterations[i] - beta_iterations[i-1])) | |
sys.stderr.write('Firth regression failed\n') | |
else: | |
# Calculate stats | |
fitll = -firth_likelihood(beta_iterations[-1], logit_model) | |
intercept = beta_iterations[-1][0] | |
beta = beta_iterations[-1][1:].tolist() | |
#Corrected this to be the square root of the diagonal of the variance-covariance matrix | |
bse = np.sqrt(np.diagonal(np.linalg.pinv(-logit_model.hessian(beta_iterations[-1])))) | |
#Predictions (y-hat) | |
pi = logit_model.predict(beta_iterations[-1]) | |
return_fit = intercept, beta, bse, fitll, pi | |
return return_fit | |
''' | |
if __name__ == "__main__": | |
import sys | |
import warnings | |
import math | |
import statsmodels | |
import numpy as np | |
from scipy import stats | |
import statsmodels.api as sm | |
# create X and y here. Make sure X has an intercept term (column of ones) | |
# ... | |
# How to call and calculate p-values | |
(intercept, beta, bse, fitll) = fit_firth(y, X) | |
# Wald test | |
waldp = 2 * (1 - stats.norm.cdf(abs(beta[0]/bse[0])) | |
# LRT | |
null_X = np.delete(X, 1, axis=1) | |
(null_intercept, null_beta, null_bse, null_fitll) = fit_firth(y, null_X) | |
lrstat = -2*(null_fitll - fitll) | |
lrt_pvalue = 1 | |
if lrstat > 0: # non-convergence | |
lrt_pvalue = stats.chi2.sf(lrstat, 1) | |
''' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Edits include: Made a correction to the standard error calculation and the library of Logit function (these are now also corrected in the original code).
Added the predicted y-hat to the return statement. Commented out sections that were not needed for my analysis. Changed the default convergence limit. Added print statements for errors.