Skip to content

Instantly share code, notes, and snippets.

@jds485
Forked from johnlees/firth_regression.py
Last active January 27, 2021 22:42
Show Gist options
  • Save jds485/fd737a8314d45485f7e11f588baf88b9 to your computer and use it in GitHub Desktop.
Save jds485/fd737a8314d45485f7e11f588baf88b9 to your computer and use it in GitHub Desktop.
Firth regression in python
'''
#!/usr/bin/env python
'''
'''Python implementation of Firth regression by John Lees
See https://www.ncbi.nlm.nih.gov/pubmed/12758140
'''
import sys
import warnings
import math
import statsmodels
import numpy as np
from scipy import stats
import statsmodels.api as sm
def firth_likelihood(beta, logit):
return -(logit.loglike(beta) + 0.5*np.log(np.linalg.det(-logit.hessian(beta))))
# Do firth regression
# Note information = -hessian, for some reason available but not implemented in statsmodels
def fit_firth(y, X, start_vec, step_limit=1000, convergence_limit=0.00001):
logit_model = sm.Logit(y, X)
if start_vec is None:
start_vec = np.zeros(X.shape[1])
beta_iterations = []
beta_iterations.append(start_vec)
for i in range(0, step_limit):
pi = logit_model.predict(beta_iterations[i])
W = np.diagflat(np.multiply(pi, 1-pi))
var_covar_mat = np.linalg.pinv(-logit_model.hessian(beta_iterations[i]))
# build hat matrix
rootW = np.sqrt(W)
H = np.dot(np.transpose(X), np.transpose(rootW))
H = np.matmul(var_covar_mat, H)
H = np.matmul(np.dot(rootW, X), H)
# penalised score
U = np.matmul(np.transpose(X), y - pi + np.multiply(np.diagonal(H), 0.5 - pi))
new_beta = beta_iterations[i] + np.matmul(var_covar_mat, U)
# step halving
j = 0
while firth_likelihood(new_beta, logit_model) > firth_likelihood(beta_iterations[i], logit_model):
new_beta = beta_iterations[i] + 0.5*(new_beta - beta_iterations[i])
j = j + 1
if (j > step_limit):
print(j, beta_iterations[i], new_beta)
sys.stderr.write('Firth regression failed\n')
return None
beta_iterations.append(new_beta)
if i > 0 and (np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) < convergence_limit):
break
return_fit = None
if np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]) >= convergence_limit:
print(np.linalg.norm(beta_iterations[i] - beta_iterations[i-1]))
sys.stderr.write('Firth regression failed\n')
else:
# Calculate stats
fitll = -firth_likelihood(beta_iterations[-1], logit_model)
intercept = beta_iterations[-1][0]
beta = beta_iterations[-1][1:].tolist()
#Corrected this to be the square root of the diagonal of the variance-covariance matrix
bse = np.sqrt(np.diagonal(np.linalg.pinv(-logit_model.hessian(beta_iterations[-1]))))
#Predictions (y-hat)
pi = logit_model.predict(beta_iterations[-1])
return_fit = intercept, beta, bse, fitll, pi
return return_fit
'''
if __name__ == "__main__":
import sys
import warnings
import math
import statsmodels
import numpy as np
from scipy import stats
import statsmodels.api as sm
# create X and y here. Make sure X has an intercept term (column of ones)
# ...
# How to call and calculate p-values
(intercept, beta, bse, fitll) = fit_firth(y, X)
# Wald test
waldp = 2 * (1 - stats.norm.cdf(abs(beta[0]/bse[0]))
# LRT
null_X = np.delete(X, 1, axis=1)
(null_intercept, null_beta, null_bse, null_fitll) = fit_firth(y, null_X)
lrstat = -2*(null_fitll - fitll)
lrt_pvalue = 1
if lrstat > 0: # non-convergence
lrt_pvalue = stats.chi2.sf(lrstat, 1)
'''
@jds485
Copy link
Author

jds485 commented Jan 27, 2021

Edits include: Made a correction to the standard error calculation and the library of Logit function (these are now also corrected in the original code).

Added the predicted y-hat to the return statement. Commented out sections that were not needed for my analysis. Changed the default convergence limit. Added print statements for errors.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment