Last active
March 12, 2020 10:01
-
-
Save jdupuy/02e7f6beb1f158e796d17df8d8cedbc1 to your computer and use it in GitHub Desktop.
C++ code to compute the inverse of a linearly-interpolated 1D table with values in [0, 1] x [0, 1] (note: the table size must be a power of two)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <cstdio> | |
#include <cstdlib> | |
#include <cmath> | |
#include <vector> | |
// inverting piecewise linear functions | |
float InverseLinear(float yStart, float yEnd, float y) | |
{ | |
return (y - yStart) / (yEnd - yStart); | |
} | |
float InverseLinearInterval(float xStart, float xEnd, | |
float yStart, float yEnd, | |
float y) | |
{ | |
float scale = xEnd - xStart; | |
float offset = xStart; | |
return InverseLinear(yStart, yEnd, y) * scale + offset; | |
} | |
// inverts a function defined with values in [0, 1]x[0, 1] | |
std::vector<float> Inverse(const std::vector<float>& cdf, int sizeLog2) | |
{ | |
int size = (1 << sizeLog2); | |
std::vector<float> qf(size, 0); | |
for (int i = 0; i < size; ++i) { | |
float u = (float)i / (size - 1); // in [0, 1] | |
int index = size / 2; | |
// binary search the value | |
for (int j = sizeLog2 - 2; j >= 0; --j) { | |
int offset = 1 << j; | |
if (u <= cdf[index]) { | |
index-= offset; | |
} else { | |
index+= offset; | |
} | |
} | |
// invert linear segment | |
if (u <= cdf[index]) { | |
float xStart = (float)(index - 1) / (size - 1); | |
float xEnd = (float)(index ) / (size - 1); | |
qf[i] = InverseLinearInterval(xStart, xEnd, cdf[index - 1], cdf[index], u); | |
} else { | |
float xStart = (float)(index + 1) / (size - 1); | |
float xEnd = (float)(index ) / (size - 1); | |
qf[i] = InverseLinearInterval(xStart, xEnd, cdf[index + 1], cdf[index], u); | |
} | |
} | |
return qf; | |
} | |
#if 0 // for experimenting | |
// dumps a plot file for GNUPLOT | |
// e.g., > plot './linear' u 1:2 w lines, '' u 1:3 w lines, '' u 1:4 w lines | |
void print(const char *filename, const std::vector<float>& cdf, int sizeLog2) | |
{ | |
FILE *pf = fopen(filename, "w"); | |
int size = 1 << sizeLog2; | |
std::vector<float> qf = Inverse(cdf, sizeLog2); | |
for (int i = 0; i < size; ++i) { | |
float u = (float)i / (size - 1); | |
fprintf(pf, "%f %f %f %f \n", u, cdf[i], qf[i], u); | |
} | |
fclose(pf); | |
} | |
int main(int argc, char **argv) | |
{ | |
int sizeLog2 = 8; | |
int size = 1 << sizeLog2; | |
std::vector<float> cdf(size); | |
// linear | |
for (int i = 0; i < size; ++i) { | |
float u = (float)i / (size - 1); | |
cdf[i] = u; | |
} | |
print("linear", cdf, sizeLog2); | |
// square | |
for (int i = 0; i < size; ++i) { | |
float u = (float)i / (size - 1); | |
cdf[i] = u * u; | |
} | |
print("square", cdf, sizeLog2); | |
// quintic | |
for (int i = 0; i < size; ++i) { | |
float u = (float)i / (size - 1); | |
cdf[i] = u * u * u * u * u; | |
} | |
print("quintic", cdf, sizeLog2); | |
// sqrt | |
for (int i = 0; i < size; ++i) { | |
float u = (float)i / (size - 1); | |
cdf[i] = sqrtf(u); | |
} | |
print("sqrt", cdf, sizeLog2); | |
} | |
#endif |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment