Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save jeanmidevacc/801171ec7c279526b968d67ca618eb83 to your computer and use it in GitHub Desktop.
Save jeanmidevacc/801171ec7c279526b968d67ca618eb83 to your computer and use it in GitHub Desktop.
import tensorflow as tf
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH ,3)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(len(CLASS_NAMES))
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# Setup the tensorboard connect
log_dir = "logs\\fit\\" + 'tensorflowtuto_' + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
history = model.fit(
train_data_gen,
steps_per_epoch=image_count_train // BATCH_SIZE,
epochs=EPOCHS,
validation_data=val_data_gen,
validation_steps=image_count_validation // BATCH_SIZE,
callbacks=[tensorboard_callback]
)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment