Skip to content

Instantly share code, notes, and snippets.

@jeasinema
Last active March 10, 2023 08:11
Show Gist options
  • Save jeasinema/1cba9b40451236ba2cfb507687e08834 to your computer and use it in GitHub Desktop.
Save jeasinema/1cba9b40451236ba2cfb507687e08834 to your computer and use it in GitHub Desktop.
Spatial(Arg)Softmax for pytorch
import torch
import torch.nn.functional as F
from torch.nn.parameter import Parameter
import numpy as np
class SpatialSoftmax(torch.nn.Module):
def __init__(self, height, width, channel, temperature=None, data_format='NCHW'):
super(SpatialSoftmax, self).__init__()
self.data_format = data_format
self.height = height
self.width = width
self.channel = channel
if temperature:
self.temperature = Parameter(torch.ones(1)*temperature)
else:
self.temperature = 1.
pos_x, pos_y = np.meshgrid(
np.linspace(-1., 1., self.height),
np.linspace(-1., 1., self.width)
)
pos_x = torch.from_numpy(pos_x.reshape(self.height*self.width)).float()
pos_y = torch.from_numpy(pos_y.reshape(self.height*self.width)).float()
self.register_buffer('pos_x', pos_x)
self.register_buffer('pos_y', pos_y)
def forward(self, feature):
# Output:
# (N, C*2) x_0 y_0 ...
if self.data_format == 'NHWC':
feature = feature.transpose(1, 3).tranpose(2, 3).view(-1, self.height*self.width)
else:
feature = feature.view(-1, self.height*self.width)
softmax_attention = F.softmax(feature/self.temperature, dim=-1)
expected_x = torch.sum(self.pos_x*softmax_attention, dim=1, keepdim=True)
expected_y = torch.sum(self.pos_y*softmax_attention, dim=1, keepdim=True)
expected_xy = torch.cat([expected_x, expected_y], 1)
feature_keypoints = expected_xy.view(-1, self.channel*2)
return feature_keypoints
if __name__ == '__main__':
data = torch.zeros([1,3,3,3])
data[0,0,0,1] = 10
data[0,1,1,1] = 10
data[0,2,1,2] = 10
layer = SpatialSoftmax(3, 3, 3, temperature=1)
print(layer(data))
@dachengxiaocheng
Copy link

dachengxiaocheng commented Feb 21, 2020

Hey, all

I am very confused about the return values of spatial softmax layer. The input of the spatial softmax is a (B, C, H, W) feature map and the output is a (B, 2C) tensor.

I guess the output of the spatial softmax should the 2D positions (x, y) of the feature points in the original image. The type should be positive int. However, I find the type of output from the code is float including a lot of negative values.

Do I have a wrong understanding of spatial softmax? Any idea about this?

Many thanks for your help.

Best

@ZhihaoAIRobotic
Copy link

Have you figured it out?

@heyzude
Copy link

heyzude commented Jun 18, 2020

@dachengxiaocheng
I think we can multiply the float output with H and W and round to int so that we can get the int coordinate(pixel like coordinate) within the range of (H, W) of CONV output.

And in my opinion, it might be cumbersome to deal with negative numbers, so why don't we just use range of [0,1], not [-1,1]?

I mean,
pos_x, pos_y = np.meshgrid( np.linspace(0., 1., self.height), np.linspace(0., 1., self.width) ) ,
Instead of
pos_x, pos_y = np.meshgrid( np.linspace(-1., 1., self.height), np.linspace(-1., 1., self.width) )
.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment