Created
August 20, 2018 23:01
-
-
Save jeasinema/4f3a852b58ec0d49c7d40d4b56c9a510 to your computer and use it in GitHub Desktop.
PointNet that supports arbitrary amount of points
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import numpy as np | |
import torch.nn.functional as F | |
class STN3d(nn.Module): | |
def __init__(self): | |
super(STN3d, self).__init__() | |
self.conv1 = torch.nn.Conv1d(3, 64, 1) | |
self.conv2 = torch.nn.Conv1d(64, 128, 1) | |
self.conv3 = torch.nn.Conv1d(128, 1024, 1) | |
self.fc1 = nn.Linear(1024, 512) | |
self.fc2 = nn.Linear(512, 256) | |
self.fc3 = nn.Linear(256, 9) | |
self.relu = nn.ReLU() | |
self.bn1 = nn.BatchNorm1d(64) | |
self.bn2 = nn.BatchNorm1d(128) | |
self.bn3 = nn.BatchNorm1d(1024) | |
self.bn4 = nn.BatchNorm1d(512) | |
self.bn5 = nn.BatchNorm1d(256) | |
def forward(self, x): | |
batchsize = x.size()[0] | |
x = F.relu(self.bn1(self.conv1(x))) | |
x = F.relu(self.bn2(self.conv2(x))) | |
x = F.relu(self.bn3(self.conv3(x))) | |
x = torch.max(x, dim=-1, keepdim=True)[0] | |
x = x.view(-1, 1024) | |
x = F.relu(self.bn4(self.fc1(x))) | |
x = F.relu(self.bn5(self.fc2(x))) | |
x = self.fc3(x) | |
iden = torch.from_numpy(np.array([1,0,0,0,1,0,0,0,1]).astype(np.float32)).view(1,9).repeat(batchsize,1).requires_grad_() | |
if x.is_cuda: | |
iden = iden.cuda() | |
x = x + iden | |
x = x.view(-1, 3, 3) | |
return x | |
class PointNetfeat(nn.Module): | |
def __init__(self, global_feat = True): | |
super(PointNetfeat, self).__init__() | |
self.stn = STN3d() | |
self.conv1 = torch.nn.Conv1d(3, 64, 1) | |
self.conv2 = torch.nn.Conv1d(64, 128, 1) | |
self.conv3 = torch.nn.Conv1d(128, 1024, 1) | |
self.bn1 = nn.BatchNorm1d(64) | |
self.bn2 = nn.BatchNorm1d(128) | |
self.bn3 = nn.BatchNorm1d(1024) | |
self.global_feat = global_feat | |
def forward(self, x): | |
batchsize = x.size()[0] | |
num_points = x.size()[-1] | |
trans = self.stn(x) | |
x = x.transpose(2,1) | |
x = torch.bmm(x, trans) | |
x = x.transpose(2,1) | |
x = F.relu(self.bn1(self.conv1(x))) | |
pointfeat = x | |
x = F.relu(self.bn2(self.conv2(x))) | |
x = self.bn3(self.conv3(x)) | |
x = torch.max(x, dim=-1, keepdim=True)[0] | |
x = x.view(-1, 1024) | |
if self.global_feat: | |
return x, trans | |
else: | |
x = x.view(-1, 1024, 1).repeat(1, 1, num_points) | |
return torch.cat([x, pointfeat], 1), trans | |
class PointNetCls(nn.Module): | |
def __init__(self, k = 2): | |
super(PointNetCls, self).__init__() | |
self.feat = PointNetfeat(global_feat=True) | |
self.fc1 = nn.Linear(1024, 512) | |
self.fc2 = nn.Linear(512, 256) | |
self.fc3 = nn.Linear(256, k) | |
self.bn1 = nn.BatchNorm1d(512) | |
self.bn2 = nn.BatchNorm1d(256) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
x, trans = self.feat(x) | |
x = F.relu(self.bn1(self.fc1(x))) | |
x = F.relu(self.bn2(self.fc2(x))) | |
x = self.fc3(x) | |
return F.log_softmax(x, dim=-1), trans | |
class PointNetDenseCls(nn.Module): | |
def __init__(self, k = 2): | |
super(PointNetDenseCls, self).__init__() | |
self.k = k | |
self.feat = PointNetfeat(global_feat=False) | |
self.conv1 = torch.nn.Conv1d(1088, 512, 1) | |
self.conv2 = torch.nn.Conv1d(512, 256, 1) | |
self.conv3 = torch.nn.Conv1d(256, 128, 1) | |
self.conv4 = torch.nn.Conv1d(128, self.k, 1) | |
self.bn1 = nn.BatchNorm1d(512) | |
self.bn2 = nn.BatchNorm1d(256) | |
self.bn3 = nn.BatchNorm1d(128) | |
def forward(self, x): | |
batchsize = x.size()[0] | |
num_points = x.size()[-1] | |
x, trans = self.feat(x) | |
x = F.relu(self.bn1(self.conv1(x))) | |
x = F.relu(self.bn2(self.conv2(x))) | |
x = F.relu(self.bn3(self.conv3(x))) | |
x = self.conv4(x) | |
x = x.transpose(2,1).contiguous() | |
x = F.log_softmax(x.view(-1,self.k), dim=-1) | |
x = x.view(batchsize, num_points, self.k) | |
return x, trans | |
if __name__ == '__main__': | |
sim_data = torch.rand(32,3,2500).requires_grad_() | |
trans = STN3d() | |
out = trans(sim_data) | |
print('stn', out.size()) | |
pointfeat = PointNetfeat(global_feat=True) | |
out, _ = pointfeat(sim_data) | |
print('global feat', out.size()) | |
pointfeat = PointNetfeat(global_feat=False) | |
out, _ = pointfeat(sim_data) | |
print('point feat', out.size()) | |
cls = PointNetCls(k = 5) | |
out, _ = cls(sim_data) | |
print('class', out.size()) | |
seg = PointNetDenseCls(k = 3) | |
out, _ = seg(sim_data) | |
print('seg', out.size()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment