Last active
November 11, 2024 08:04
-
-
Save jeasinema/5832c484c06c2f3e801f1baad94f2d17 to your computer and use it in GitHub Desktop.
A python implementation of delaunay algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding:UTF-8 -*- | |
# File Name : face_morphing.py | |
# Creation Date : 04-04-2018 | |
# Created By : Jeasine Ma [jeasinema[at]gmail[dot]com] | |
import cv2 | |
import json | |
import numpy as np | |
class Delaunay(object): | |
def __init__(self): | |
pass | |
@staticmethod | |
def load_landmark(fname): | |
js = json.load(open(fname)) | |
ld = [[i['x'], i['y']] for i in list(js['faces'][0]['landmark'].values())] | |
return np.array(ld) | |
@staticmethod | |
def cal_delaunay_triangle(image_size, verticies): | |
# Input: | |
# (h, w) | |
# (N, 2) | |
h, w = image_size | |
origin_length = verticies.shape[0] | |
verticies = verticies.copy() | |
triangles, temp_triangles = set(), set() | |
indices = np.arange(verticies.shape[0]) | |
indices = indices[np.argsort(verticies[:, 0])] | |
# super triangle | |
a, b, c = [-10, h], [10+w, h], [w/2, -np.tan(np.pi/2 - np.arctan(10/h))*w/2] | |
verticies = np.concatenate([verticies, np.array([a,b,c])], axis=0) | |
indices = list(indices) | |
[indices.append(len(indices)) for i in range(3)] | |
triangles.add((indices[-3], indices[-1], indices[-2])) # a,c,b | |
temp_triangles.add((indices[-3], indices[-1], indices[-2])) # a,c,b | |
# main loop | |
for ind in indices[:-3]: | |
edge_buffer = set() | |
buf_temp_triangles = temp_triangles.copy() | |
for tri_ind in temp_triangles: | |
tri = verticies[list(tri_ind)] | |
center, r = FaceMorphing.cal_circum_circle(tri) | |
res = FaceMorphing.judge_circle_point_relation(center, r, verticies[ind, :]) | |
if res == 0: | |
triangles.add(tri_ind) | |
buf_temp_triangles.remove(tri_ind) | |
elif res == 1: | |
continue | |
else: # a, c, b => (a,c), (a,b), (c,b) | |
if (tri_ind[0], tri_ind[1]) not in edge_buffer: | |
edge_buffer.add((tri_ind[0], tri_ind[1])) | |
else: | |
edge_buffer.remove((tri_ind[0], tri_ind[1])) | |
if (tri_ind[0], tri_ind[2]) not in edge_buffer: | |
edge_buffer.add((tri_ind[0], tri_ind[2])) | |
else: | |
edge_buffer.remove((tri_ind[0], tri_ind[2])) | |
if (tri_ind[1], tri_ind[2]) not in edge_buffer: | |
edge_buffer.add((tri_ind[1], tri_ind[2])) | |
else: | |
edge_buffer.remove((tri_ind[1], tri_ind[2])) | |
buf_temp_triangles.remove(tri_ind) | |
for edge in edge_buffer: | |
tmp_ind = np.array([ind, edge[0], edge[1]]) | |
points = np.array([verticies[tmp_ind[0]], verticies[tmp_ind[1]], verticies[tmp_ind[2]]]) | |
tmp_ind = tmp_ind[np.argsort(points[:, 0])] | |
buf_temp_triangles.add((tmp_ind[0], tmp_ind[1], tmp_ind[2])) | |
temp_triangles = buf_temp_triangles | |
triangles = triangles.union(temp_triangles) | |
final_triangles = triangles.copy() | |
for tri_ind in triangles: | |
if np.sum(np.array(tri_ind) >= origin_length) > 0: | |
final_triangles.remove(tri_ind) | |
res = np.zeros((len(final_triangles), 3, 2)) | |
for ind, tri_ind in enumerate(final_triangles): | |
res[ind] = verticies[list(tri_ind)] | |
return res.astype(np.int32) | |
@staticmethod | |
def cal_circum_circle(triangle): | |
# Input: | |
# (3,2) | |
# Output: | |
# (x,y), r | |
x1, x2, x3 = triangle[:, 0] | |
y1, y2, y3 = triangle[:, 1] | |
a = np.sqrt(np.sum((triangle[0, :] - triangle[1, :])**2)) | |
b = np.sqrt(np.sum((triangle[0, :] - triangle[2, :])**2)) | |
c = np.sqrt(np.sum((triangle[1, :] - triangle[2, :])**2)) | |
S = (1/2)*a*b*np.sqrt(1 - ((a**2 + b**2 - c**2)/(2*a*b))**2) | |
if S == 0: | |
print(triangle) | |
r = 0 | |
x, y = x1, y1 | |
else: | |
r = (a*b*c)/(4*S) | |
x = np.linalg.det([[x1**2 + y1**2, y1, 1],[x2**2 + y2**2, y2, 1],[x3**2 + y3**2, y3, 1]])/(2*np.linalg.det([[x1, y1, 1],[x2, y2, 1],[x3, y3, 1]])) | |
y = np.linalg.det([[x1, x1**2 + y1**2, 1],[x2, x2**2 + y2**2, 1],[x3, x3**2 + y3**2, 1]])/(2*np.linalg.det([[x1, y1, 1],[x2, y2, 1],[x3, y3, 1]])) | |
return (x, y), r | |
@staticmethod | |
def judge_circle_point_relation(center, r, point): | |
# Input: | |
# (x,y), r, (x,y) | |
x1, y1 = center | |
x2, y2 = point | |
if (x2-x1)**2 + (y2-y1)**2 <= r**2: | |
return 2 | |
elif x2 > x1: | |
return 0 | |
else: | |
return 1 | |
@staticmethod | |
def draw_delaunay(img, triangles): | |
# Input: | |
# (h, w, 3), (N, 3, 2) | |
img = img.copy() | |
for ind in range(triangles.shape[0]): | |
img = cv2.line(img, tuple(triangles[ind, 0, :]), tuple(triangles[ind, 1, :]), (255,0,0), 1) | |
img = cv2.line(img, tuple(triangles[ind, 0, :]), tuple(triangles[ind, 2, :]), (255,0,0), 1) | |
img = cv2.line(img, tuple(triangles[ind, 1, :]), tuple(triangles[ind, 2, :]), (255,0,0), 1) | |
return img | |
if __name__ == '__main__': | |
alg = Delaunay() | |
landmark = facemorph.load_landmark('landmark.txt') | |
img = cv2.imread('img.png') | |
ret = alg.cal_delaundry_triangle(img.shape[0:2], landmark) | |
img = alg.draw_delaunay(img, ret) | |
cv2.imwrite('res.png', img) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment