Last active
June 3, 2018 07:31
-
-
Save jeasinema/685fcb271d65d43d2b018ebdcc04d0b3 to your computer and use it in GitHub Desktop.
Generate .pcd and .ply file from YCB object dataset(ref: http://ycb-benchmarks.s3-website-us-east-1.amazonaws.com/scripts_to_publish/ycb_generate_point_cloud.py, with several bug fixes)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import numpy as np | |
import h5py as h5 | |
from scipy.misc import imread | |
from struct import pack, unpack | |
import IPython | |
import math | |
# Extract pointcloud from rgb-d, then convert it into obj coordinate system(tsdf/poisson reconstructed object) | |
# In fact, merged_cloud.ply is exactly composed by pointclouds that transformed into this coordinate system | |
# ref: http://ycb-benchmarks.s3-website-us-east-1.amazonaws.com/scripts_to_publish/ycb_generate_point_cloud.py, with several bug fixes | |
# Parameters | |
ycb_data_folder = "./" # Folder that contains the ycb data. | |
target_object = "006_mustard_bottle" # Full name of the target object. | |
viewpoint_camera = "NP4" # Camera which the viewpoint will be generated. | |
viewpoint_angle = "90" # Relative angle of the object w.r.t the camera (angle of the turntable). | |
def im2col(im, psize): | |
n_channels = 1 if len(im.shape) == 2 else im.shape[0] | |
(n_channels, rows, cols) = (1,) * (3 - len(im.shape)) + im.shape | |
im_pad = np.zeros((n_channels, | |
int(math.ceil(1.0 * rows / psize) * psize), | |
int(math.ceil(1.0 * cols / psize) * psize))) | |
im_pad[:, 0:rows, 0:cols] = im | |
final = np.zeros((im_pad.shape[1], im_pad.shape[2], n_channels, | |
psize, psize)) | |
for c in range(n_channels): | |
for x in range(psize): | |
for y in range(psize): | |
im_shift = np.vstack( | |
(im_pad[c, x:], im_pad[c, :x])) | |
im_shift = np.column_stack( | |
(im_shift[:, y:], im_shift[:, :y])) | |
final[x::psize, y::psize, c] = np.swapaxes( | |
im_shift.reshape(int(im_pad.shape[1] / psize), psize, | |
int(im_pad.shape[2] / psize), psize), 1, 2) | |
return np.squeeze(final[0:rows - psize + 1, 0:cols - psize + 1]) | |
def filterDiscontinuities(depthMap): | |
filt_size = 7 | |
thresh = 1000 | |
# Ensure that filter sizes are okay | |
assert filt_size % 2 == 1, "Can only use odd filter sizes." | |
# Compute discontinuities | |
offset = int((filt_size - 1) / 2) | |
patches = 1.0 * im2col(depthMap, filt_size) | |
mids = patches[:, :, offset, offset] | |
mins = np.min(patches, axis=(2, 3)) | |
maxes = np.max(patches, axis=(2, 3)) | |
discont = np.maximum(np.abs(mins - mids), | |
np.abs(maxes - mids)) | |
mark = discont > thresh | |
# Account for offsets | |
final_mark = np.zeros((480, 640), dtype=np.uint16) | |
final_mark[offset:offset + mark.shape[0], | |
offset:offset + mark.shape[1]] = mark | |
return depthMap * (1 - final_mark) | |
def registerDepthMap(unregisteredDepthMap, | |
rgbImage, | |
depthK, | |
rgbK, | |
H_RGBFromDepth): | |
unregisteredHeight = unregisteredDepthMap.shape[0] | |
unregisteredWidth = unregisteredDepthMap.shape[1] | |
registeredHeight = rgbImage.shape[0] | |
registeredWidth = rgbImage.shape[1] | |
registeredDepthMap = np.zeros((registeredHeight, registeredWidth)) | |
xyzDepth = np.empty((4,1)) | |
xyzRGB = np.empty((4,1)) | |
# Ensure that the last value is 1 (homogeneous coordinates) | |
xyzDepth[3] = 1 | |
invDepthFx = 1.0 / depthK[0,0] | |
invDepthFy = 1.0 / depthK[1,1] | |
depthCx = depthK[0,2] | |
depthCy = depthK[1,2] | |
rgbFx = rgbK[0,0] | |
rgbFy = rgbK[1,1] | |
rgbCx = rgbK[0,2] | |
rgbCy = rgbK[1,2] | |
undistorted = np.empty(2) | |
for v in range(unregisteredHeight): | |
for u in range(unregisteredWidth): | |
depth = unregisteredDepthMap[v,u] | |
if depth == 0: | |
continue | |
xyzDepth[0] = ((u - depthCx) * depth) * invDepthFx | |
xyzDepth[1] = ((v - depthCy) * depth) * invDepthFy | |
xyzDepth[2] = depth | |
xyzRGB[0] = (H_RGBFromDepth[0,0] * xyzDepth[0] + | |
H_RGBFromDepth[0,1] * xyzDepth[1] + | |
H_RGBFromDepth[0,2] * xyzDepth[2] + | |
H_RGBFromDepth[0,3]) | |
xyzRGB[1] = (H_RGBFromDepth[1,0] * xyzDepth[0] + | |
H_RGBFromDepth[1,1] * xyzDepth[1] + | |
H_RGBFromDepth[1,2] * xyzDepth[2] + | |
H_RGBFromDepth[1,3]) | |
xyzRGB[2] = (H_RGBFromDepth[2,0] * xyzDepth[0] + | |
H_RGBFromDepth[2,1] * xyzDepth[1] + | |
H_RGBFromDepth[2,2] * xyzDepth[2] + | |
H_RGBFromDepth[2,3]) | |
invRGB_Z = 1.0 / xyzRGB[2] | |
undistorted[0] = (rgbFx * xyzRGB[0]) * invRGB_Z + rgbCx | |
undistorted[1] = (rgbFy * xyzRGB[1]) * invRGB_Z + rgbCy | |
uRGB = int(undistorted[0] + 0.5) | |
vRGB = int(undistorted[1] + 0.5) | |
if (uRGB < 0 or uRGB >= registeredWidth) or (vRGB < 0 or vRGB >= registeredHeight): | |
continue | |
registeredDepth = xyzRGB[2] | |
if registeredDepth > registeredDepthMap[vRGB,uRGB]: | |
registeredDepthMap[vRGB,uRGB] = registeredDepth | |
return registeredDepthMap | |
def registeredDepthMapToPointCloud(depthMap, rgbImage, rgbK, refFromRGB, objFromref, organized=False): | |
rgbCx = rgbK[0,2] | |
rgbCy = rgbK[1,2] | |
invRGBFx = 1.0/rgbK[0,0] | |
invRGBFy = 1.0/rgbK[1,1] | |
height = depthMap.shape[0] | |
width = depthMap.shape[1] | |
if organized: | |
cloud = np.empty((height, width, 6), dtype=np.float) | |
else: | |
cloud = np.empty((1, height*width, 6), dtype=np.float) | |
goodPointsCount = 0 | |
for v in range(height): | |
for u in range(width): | |
depth = depthMap[v,u] | |
if organized: | |
row = v | |
col = u | |
else: | |
row = 0 | |
col = goodPointsCount | |
if depth <= 0: | |
if organized: | |
if depth <= 0: | |
cloud[row,col,0] = float('nan') | |
cloud[row,col,1] = float('nan') | |
cloud[row,col,2] = float('nan') | |
cloud[row,col,3] = 0 | |
cloud[row,col,4] = 0 | |
cloud[row,col,5] = 0 | |
continue | |
x = (u - rgbCx) * depth * invRGBFx | |
y = (v - rgbCy) * depth * invRGBFy | |
z = depth | |
#refFromRGB | |
x1 = (refFromRGB[0,0] * x + | |
refFromRGB[0,1] * y + | |
refFromRGB[0,2] * z + | |
refFromRGB[0,3]) | |
y1 = (refFromRGB[1,0] * x + | |
refFromRGB[1,1] * y + | |
refFromRGB[1,2] * z + | |
refFromRGB[1,3]) | |
z1 = (refFromRGB[2,0] * x + | |
refFromRGB[2,1] * y + | |
refFromRGB[2,2] * z + | |
refFromRGB[2,3]) | |
x, y, z = x1, y1, z1 | |
# obj from ref | |
cloud[row,col,0] = (objFromref[0,0] * x + | |
objFromref[0,1] * y + | |
objFromref[0,2] * z + | |
objFromref[0,3]) | |
cloud[row,col,1] = (objFromref[1,0] * x + | |
objFromref[1,1] * y + | |
objFromref[1,2] * z + | |
objFromref[1,3]) | |
cloud[row,col,2] = (objFromref[2,0] * x + | |
objFromref[2,1] * y + | |
objFromref[2,2] * z + | |
objFromref[2,3]) | |
cloud[row,col,3] = rgbImage[v,u,0] | |
cloud[row,col,4] = rgbImage[v,u,1] | |
cloud[row,col,5] = rgbImage[v,u,2] | |
if not organized: | |
goodPointsCount += 1 | |
if not organized: | |
cloud = cloud[:,:goodPointsCount,:] | |
return cloud | |
def writePLY(filename, cloud, faces=[]): | |
if len(cloud.shape) != 3: | |
print("Expected pointCloud to have 3 dimensions. Got %d instead" % len(cloud.shape)) | |
return | |
color = True if cloud.shape[2] == 6 else False | |
num_points = cloud.shape[0]*cloud.shape[1] | |
header_lines = [ | |
'ply', | |
'format ascii 1.0', | |
'element vertex %d' % num_points, | |
'property float x', | |
'property float y', | |
'property float z', | |
] | |
if color: | |
header_lines.extend([ | |
'property uchar diffuse_red', | |
'property uchar diffuse_green', | |
'property uchar diffuse_blue', | |
]) | |
if faces != None: | |
header_lines.extend([ | |
'element face %d' % len(faces), | |
'property list uchar int vertex_indices' | |
]) | |
header_lines.extend([ | |
'end_header', | |
]) | |
f = open(filename, 'w+') | |
f.write('\n'.join(header_lines)) | |
f.write('\n') | |
lines = [] | |
for i in range(cloud.shape[0]): | |
for j in range(cloud.shape[1]): | |
if color: | |
lines.append('%s %s %s %d %d %d' % tuple(cloud[i, j, :].tolist())) | |
else: | |
lines.append('%s %s %s' % tuple(cloud[i, j, :].tolist())) | |
for face in faces: | |
lines.append(('%d' + ' %d'*len(face)) % tuple([len(face)] + list(face))) | |
f.write('\n'.join(lines) + '\n') | |
f.close() | |
def writePCD(filename, pointCloud, ascii=True): | |
if len(pointCloud.shape) != 3: | |
print("Expected pointCloud to have 3 dimensions. Got %d instead" % len(pointCloud.shape)) | |
return | |
with open(filename, 'w') as f: | |
height = pointCloud.shape[0] | |
width = pointCloud.shape[1] | |
f.write("# .PCD v.7 - Point Cloud Data file format\n") | |
f.write("VERSION .7\n") | |
if pointCloud.shape[2] == 3: | |
f.write("FIELDS x y z\n") | |
f.write("SIZE 4 4 4\n") | |
f.write("TYPE F F F\n") | |
f.write("COUNT 1 1 1\n") | |
else: | |
f.write("FIELDS x y z rgb\n") | |
f.write("SIZE 4 4 4 4\n") | |
f.write("TYPE F F F F\n") | |
f.write("COUNT 1 1 1 1\n") | |
f.write("WIDTH %d\n" % width) | |
f.write("HEIGHT %d\n" % height) | |
f.write("VIEWPOINT 0 0 0 1 0 0 0\n") | |
f.write("POINTS %d\n" % (height * width)) | |
if ascii: | |
f.write("DATA ascii\n") | |
for row in range(height): | |
for col in range(width): | |
if pointCloud.shape[2] == 3: | |
f.write("%f %f %f\n" % tuple(pointCloud[row, col, :])) | |
else: | |
f.write("%f %f %f" % tuple(pointCloud[row, col, :3])) | |
r = int(pointCloud[row, col, 3]) | |
g = int(pointCloud[row, col, 4]) | |
b = int(pointCloud[row, col, 5]) | |
rgb_int = (r << 16) | (g << 8) | b | |
packed = pack('i', rgb_int) | |
rgb = unpack('f', packed)[0] | |
f.write(" %.12e\n" % rgb) | |
else: | |
f.write("DATA binary\n") | |
if pointCloud.shape[2] == 6: | |
# These are written as bgr because rgb is interpreted as a single | |
# little-endian float. | |
dt = np.dtype([('x', np.float32), | |
('y', np.float32), | |
('z', np.float32), | |
('b', np.uint8), | |
('g', np.uint8), | |
('r', np.uint8), | |
('I', np.uint8)]) | |
pointCloud_tmp = np.zeros((height*width, 1), dtype=dt) | |
for i, k in enumerate(['x', 'y', 'z', 'r', 'g', 'b']): | |
pointCloud_tmp[k] = pointCloud[:, :, i].reshape((height*width, 1)) | |
pointCloud_tmp.tofile(f) | |
else: | |
dt = np.dtype([('x', np.float32), | |
('y', np.float32), | |
('z', np.float32), | |
('I', np.uint8)]) | |
pointCloud_tmp = np.zeros((height*width, 1), dtype=dt) | |
for i, k in enumerate(['x', 'y', 'z']): | |
pointCloud_tmp[k] = pointCloud[:, :, i].reshape((height*width, 1)) | |
pointCloud_tmp.tofile(f) | |
def getRGBFromDepthTransform(calibration, camera, referenceCamera): | |
irKey = "H_{0}_ir_from_{1}".format(camera, referenceCamera) | |
rgbKey = "H_{0}_from_{1}".format(camera, referenceCamera) | |
rgbFromRef = calibration[rgbKey][:] | |
irFromRef = calibration[irKey][:] | |
return np.dot(rgbFromRef, np.linalg.inv(irFromRef)), np.linalg.inv(rgbFromRef) | |
if __name__ == "__main__": | |
referenceCamera = "NP5" # can only be NP5 | |
if not os.path.exists(ycb_data_folder+"/"+target_object+"/clouds"): | |
os.makedirs(ycb_data_folder+"/"+target_object+"/clouds") | |
basename = "{0}_{1}".format(viewpoint_camera, viewpoint_angle) | |
depthFilename = os.path.join(ycb_data_folder+ target_object, basename + ".h5") | |
rgbFilename = os.path.join(ycb_data_folder + target_object, basename + ".jpg") | |
pbmFilename = os.path.join(ycb_data_folder + target_object, 'masks', basename + "_mask.pbm") | |
calibrationFilename = os.path.join(ycb_data_folder+target_object, "calibration.h5") | |
objFromrefFilename = os.path.join(ycb_data_folder+target_object, 'poses', '{0}_{1}_pose.h5'.format(referenceCamera, viewpoint_angle)) | |
print(depthFilename) | |
print(rgbFilename) | |
print(pbmFilename) | |
print(calibrationFilename) | |
print(objFromrefFilename) | |
calibration = h5.File(calibrationFilename, 'r') | |
objFromref = h5.File(objFromrefFilename, 'r')['H_table_from_reference_camera'][:] | |
if not os.path.isfile(rgbFilename): | |
print("The rgbd data is not available for the target object \"%s\". Please download the data first." % target_object) | |
exit(1) | |
rgbImage = imread(rgbFilename) | |
pbmImage = imread(pbmFilename) | |
depthK = calibration["{0}_depth_K".format(viewpoint_camera)][:] # use depth instead of ir | |
rgbK = calibration["{0}_rgb_K".format(viewpoint_camera)][:] | |
depthScale = np.array(calibration["{0}_ir_depth_scale".format(viewpoint_camera)]) * .0001 # 100um to meters | |
H_RGBFromDepth, refFromRGB = getRGBFromDepthTransform(calibration, viewpoint_camera, referenceCamera) | |
unregisteredDepthMap = h5.File(depthFilename, 'r')["depth"][:] | |
unregisteredDepthMap = filterDiscontinuities(unregisteredDepthMap) * depthScale | |
registeredDepthMap = registerDepthMap(unregisteredDepthMap, | |
rgbImage, | |
depthK, | |
rgbK, | |
H_RGBFromDepth) | |
# apply mask | |
registeredDepthMap[pbmImage == 255] = 0 | |
pointCloud = registeredDepthMapToPointCloud(registeredDepthMap, rgbImage, rgbK, refFromRGB, objFromref) | |
writePLY(ycb_data_folder+target_object+"/clouds/pc_"+viewpoint_camera+"_"+referenceCamera+"_"+viewpoint_angle+"_test.ply", pointCloud) | |
writePCD(ycb_data_folder+target_object+"/clouds/pc_"+viewpoint_camera+"_"+referenceCamera+"_"+viewpoint_angle+"_test.pcd", pointCloud) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment