Created
April 9, 2018 19:31
-
-
Save jeasinema/68c549646e0cd9e41be94beba8b1bc2b to your computer and use it in GitHub Desktop.
A simple python snippet for logging with tensorboard
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Simple example on how to log scalars and images to tensorboard without tensor ops. | |
License: Copyleft | |
""" | |
__author__ = "Jeasine Ma" | |
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
from io import BytesIO | |
class Logger(object): | |
"""Logging in tensorboard without tensorflow ops.""" | |
def __init__(self, log_dir): | |
"""Creates a summary writer logging to log_dir.""" | |
self.writer = tf.summary.FileWriter(log_dir) | |
def log_scalar(self, tag, value, step): | |
"""Log a scalar variable. | |
Parameter | |
---------- | |
tag : basestring | |
Name of the scalar | |
value | |
step : int | |
training iteration | |
""" | |
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, | |
simple_value=value)]) | |
self.writer.add_summary(summary, step) | |
def log_images(self, tag, image, step): | |
"""Logs a list of images.""" | |
height, width, channel = image.shape | |
image = Image.fromarray(image) | |
output = BytesIO() | |
image.save(output, format='PNG') | |
image_string = output.getvalue() | |
output.close() | |
# Create an Image object | |
img_sum = tf.Summary.Image(height=height, | |
width=width, | |
colorspace=channel, | |
encoded_image_string=image_string) | |
# Create a Summary value | |
im_summary = tf.Summary.Value(tag='%s' % (tag), image=img_sum) | |
# Create and write Summary | |
summary = tf.Summary(value=[im_summary]) | |
self.writer.add_summary(summary, step) | |
def log_histogram(self, tag, values, step, bins=1000): | |
"""Logs the histogram of a list/vector of values.""" | |
# Convert to a numpy array | |
values = np.array(values) | |
# Create histogram using numpy | |
counts, bin_edges = np.histogram(values, bins=bins) | |
# Fill fields of histogram proto | |
hist = tf.HistogramProto() | |
hist.min = float(np.min(values)) | |
hist.max = float(np.max(values)) | |
hist.num = int(np.prod(values.shape)) | |
hist.sum = float(np.sum(values)) | |
hist.sum_squares = float(np.sum(values**2)) | |
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1] | |
# See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30 | |
# Thus, we drop the start of the first bin | |
bin_edges = bin_edges[1:] | |
# Add bin edges and counts | |
for edge in bin_edges: | |
hist.bucket_limit.append(edge) | |
for c in counts: | |
hist.bucket.append(c) | |
# Create and write Summary | |
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)]) | |
self.writer.add_summary(summary, step) | |
self.writer.flush() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment