Skip to content

Instantly share code, notes, and snippets.

@jeasinema
Created April 9, 2018 19:31
Show Gist options
  • Save jeasinema/68c549646e0cd9e41be94beba8b1bc2b to your computer and use it in GitHub Desktop.
Save jeasinema/68c549646e0cd9e41be94beba8b1bc2b to your computer and use it in GitHub Desktop.
A simple python snippet for logging with tensorboard
"""Simple example on how to log scalars and images to tensorboard without tensor ops.
License: Copyleft
"""
__author__ = "Jeasine Ma"
import tensorflow as tf
from PIL import Image
import numpy as np
from io import BytesIO
class Logger(object):
"""Logging in tensorboard without tensorflow ops."""
def __init__(self, log_dir):
"""Creates a summary writer logging to log_dir."""
self.writer = tf.summary.FileWriter(log_dir)
def log_scalar(self, tag, value, step):
"""Log a scalar variable.
Parameter
----------
tag : basestring
Name of the scalar
value
step : int
training iteration
"""
summary = tf.Summary(value=[tf.Summary.Value(tag=tag,
simple_value=value)])
self.writer.add_summary(summary, step)
def log_images(self, tag, image, step):
"""Logs a list of images."""
height, width, channel = image.shape
image = Image.fromarray(image)
output = BytesIO()
image.save(output, format='PNG')
image_string = output.getvalue()
output.close()
# Create an Image object
img_sum = tf.Summary.Image(height=height,
width=width,
colorspace=channel,
encoded_image_string=image_string)
# Create a Summary value
im_summary = tf.Summary.Value(tag='%s' % (tag), image=img_sum)
# Create and write Summary
summary = tf.Summary(value=[im_summary])
self.writer.add_summary(summary, step)
def log_histogram(self, tag, values, step, bins=1000):
"""Logs the histogram of a list/vector of values."""
# Convert to a numpy array
values = np.array(values)
# Create histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill fields of histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
# See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30
# Thus, we drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment