Last active
February 26, 2019 08:15
-
-
Save jeasinema/e981d896de0908d0569908b07a579e7e to your computer and use it in GitHub Desktop.
Plot smooth curve like other people do
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
def smooth(y, box_pts): | |
box_pts = max(box_pts, 1) if len(y) > box_pts else 1 | |
box = np.ones(box_pts)/box_pts | |
y_smooth = np.convolve(y, box, mode='valid') | |
return y_smooth | |
repeat = 5 | |
length = 1000 | |
tag_list = [ | |
'Plot A', | |
'Plot B', | |
'Plot C' | |
] | |
value_list = [ | |
('Model 1', np.random.rand(len(tag_list), repeat, length)), | |
('Model 2', np.random.rand(len(tag_list), repeat, length)), | |
('Model 3', np.random.rand(len(tag_list), repeat, length)), | |
('Model 4', np.random.rand(len(tag_list), repeat, length)), | |
] | |
fontsize = 13 | |
title = 'Demo' | |
def main(): | |
fig = plt.figure() | |
fig.set_size_inches(15, 5) | |
fig.clf() | |
num_plots = len(tag_list) | |
clrs = sns.color_palette("husl", len(value_list)) | |
base = fig.add_subplot(111) | |
base.spines['top'].set_color('none') | |
base.spines['bottom'].set_color('none') | |
base.spines['left'].set_color('none') | |
base.spines['right'].set_color('none') | |
base.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off') | |
with sns.axes_style('darkgrid'): | |
axes = fig.subplots(1, num_plots) | |
for ind_model, item in enumerate(value_list): | |
k, v = item | |
values_list = v | |
for ind, (tag, values) in enumerate(zip(np.array(tag_list), np.array(values_list))): | |
a_min = np.iinfo(np.int64).min | |
a_max = np.iinfo(np.int64).max | |
# when extra smoothness is needed for each repeated runnings | |
tmp = [] | |
win_size = 10 # critic | |
for i in values: | |
tmp.append(smooth(i, win_size)) | |
tmp = np.array(tmp) | |
mean = np.mean(tmp, axis=0) | |
std = np.std(tmp, axis=0) | |
# when there is no need for extra smoothness | |
# mean = np.mean(values, axis=0) | |
# std = np.std(values, axis=0) | |
axes[ind].plot(np.arange(len(mean)), mean, '-', c=clrs[ind_model], label=k.upper()) | |
axes[ind].fill_between(np.arange(len(mean)), np.clip(mean - std, a_min=a_min, a_max=a_max), | |
np.clip(mean + std, a_min=a_min, a_max=a_max), alpha=0.3, facecolor=clrs[ind_model]) | |
axes[ind].set_ylabel(tag, fontsize=fontsize) | |
axes[-1].legend(fontsize=fontsize, loc=4) # inplot | |
# axes[-1].legend(fontsize=fontsize, loc='center left', bbox_to_anchor=(1, 0.5)) # right side | |
# axes[-1].legend(fontsize=fontsize, loc='center left', bbox_to_anchor=(0.5, -0.05)) # down side(not working yet) | |
base.set_title(title, fontsize=fontsize) | |
base.set_xlabel('Trials', fontsize=fontsize) | |
fig.tight_layout(pad=0) | |
fig.savefig('{}.pdf'.format(title)) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment